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Abstract. We have investigated the role of turbulence for two problems, the effect of the polarization
current on the NTM and the effect of diamagnetic drifts on mode penetration. For the NTM problem,
we find that the fluctuations exert a drag force on the island that results in a stabilizing slowdown in
the propagation velocity. For the mode penetration problem, we have investigated the influence of po-
larization and diamagnetic rotation in the error field penetration threshold by comparing the results of
electromagnetic simulations using a two-fluid model with theory. For rotation velocities between the ion
and electron diamagnetic velocity, drift-waves are excited and the solution becomes delocalized. We find
that the existing linear theories that neglect the drift wave radiation effect overestimate the penetration
threshold.

1. Introduction

Magnetic islands may arise as a consequence of the Neoclassical Tearing Mode (NTM)
instability in tokamaks [1, 2], where they can limit the duration of high beta discharges.
Alternatively, they may appear as a result of currents flowing in external conductors,
either applied intentionally as in the ergodic magnetic divertor or as result of errors in the
alignment of the coils [3]. In either case, they significantly affect the plasma by modifying
its local features, as for example, its pressure gradient and velocity profile in the neigh-
borhood of the island. Island formation and evolution in tokamaks occur in a turbulent
environment, since the steep pressure gradients present in the plasma naturally excite
short-wavelength instabilities such as drift-waves. Previous efforts at predicting the onset
and growth of magnetic islands have modelled the effects of turbulence through the use
of anomalous transport coefficients. In most cases of interest, however, the widths of the
magnetic islands and their phase velocities are comparable to the corresponding scales for
plasma turbulence, so that the mutual interaction between islands and turbulence cannot
properly be described through the use of macroscopic transport coefficients. In the last
few years, a number of numerical and theoretical works [4, 5, 7, 6, 8] have studied differ-
ent aspects of the interaction between magnetic islands and turbulence. In this paper we
investigate the role of turbulence for two problems, the effect of the polarization current
on the NTM and the effect of diamagnetic drifts on mode penetration.

The polarization current can be responsible for the observed threshold in the growth
of neoclassical tearing modes. In order to be stabilizing, however, the relative velocity
between the island and the surrounding plasma must lie between the ion and electron
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diamagnetic drift velocities, with the strength of the stabilization decreasing as either
drift velocity is approached [9]. We have examined the effects of resistive drift-wave
turbulence on an island by using a fluid model that extends the Hasegawa-Wakatani
model by including the effects of magnetic shear (and thus of the magnetic island) on
the turbulence [8]. The work reported here forgoes the use of an electromagnetic model
such as that used by Ishizawa [7] in favor of an electrostatic model. In an electrostatic
model the island can be thought of as a perturbation of the magnetic field of fixed shape
and amplitude. The island’s rotation velocity u, by contrast, can be allowed to evolve
dynamically. The value of u is determined by the vorticity equation and by the boundary
conditions. The advantage of the electrostatic approximation is that it allows the island
width to be set to any desired value without external forcing (which would affect the
rotation frequency as well as the width of the island) and without the long simulation
times needed for Ohmic relaxation. The electrostatic approximation facilitates the study
of the dependence on the island width of various quantities and phenomena of interest
such as the mode frequency, polarization current, background density-flattening, and
turbulence.

In the second part of the paper, we describe how the penetration in the plasma of resonant
magnetic perturbations (i.e. error fields) is modified by diamagnetic effects. Driven mag-
netic islands, resulting from such penetration, exert a braking force on the plasma and
thus play an important role in momentum transport, causing qualitative changes to the
profile of plasma velocity. In the standard model [3], as the error field amplitude increases,
a mode penetration threshold is encountered above which the plasma rotation is arrested
and the island grows to a size comparable to or greater than its size in vacuum. It has
been shown with quasi-linear MHD models, however, that plasma rotation can effectively
suppress the error field penetration. We have investigated the influence of polarization
and diamagnetic rotation in the error field penetration threshold by comparing the results
of two-fluid electromagnetic simulations with previously-developed analytic theories. For
moderate rotation velocities drift-waves are excited and the solution becomes delocal-
ized. We find that the existing linear theories that neglect the drift-wave radiation effect
overestimate the penetration threshold.

2. Model Equations

Our investigation is carried out in a 2D slab configuration, for low-β plasmas with a
strong magnetic field Bz in the ignorable direction, ez. We assume constant electron
temperature and cold ions. The magnetic field and the plasma E × B velocity can be
written as: B = Bzez+ez×∇ψ and v = ez ×∇ϕ, where ψ is the normalized magnetic flux
and ϕ is the normalized electric potential. The fluid model that we analyze is a reduced
version of that obtained by Hazeltine et al. in Ref.[10]. The normalized equations are:

∂U
∂t

+[ϕ,U ] = [J, ψ] + µ∇2U, (1)
∂ψ
∂t

+[ϕ, ψ] = [n, ψ]− η(J − Jeq), (2)
∂n
∂t

+[ϕ, n] = ρ2[J, ψ] + D∇2n. (3)

Equation 1 is the curl of the plasma (ion) momentum balance projected along the confining
magnetic field direction and evolves the normalized plasma vorticity, U = ∇2ϕ. Equation
2 is Ohm’s law, obtained taking the projection of the electron momentum balance along
the magnetic field (and neglecting electron inertia). Lastly, Eq.3 is the conservation
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equation for the normalized plasma density, n (without loss of generality, we assume that
n is the plasma density minus its value at the reconnecting surface). The system is closed
by Ampère’s law, J = −∇2ψ where J is the normalized current. In our convention, all the
transverse lengths scale (along x) with L, a typical equilibrium length scale, and all the
velocities with vA = (Bzε)/

√
4πminc, the transverse Alfvén velocity. Here nc is a typical

density, mi is the ion mass and ε is the inverse aspect ratio, The ”radial” and ”poloidal”
directions are labelled x and y respectively. Consequently, the transverse Alfvén time
is: τA = L/vA. The operator [A,B] = ∂xA∂yB − ∂xB∂yA is the Poisson bracket of two
generic scalar fields A and B. Note that [ϕ, · · · ] = v ·∇ · · · represents the E×B advection
and [· · · , ψ] = B/Bz · ∇ · · · is the parallel gradient, ∇‖. In Eq.(3) ρ = ρs/L, ρs = cs/Ω

with cs =
√

T/mi the ion sound speed calculated with the electron temperature, T ,
and Ω = eBz/mic measures the ion gyrofrequency (e is the electric charge and c is the
speed of light). The model includes several (normalized) dissipative coefficients such as
the electrical resistivity, η, the particle diffusivity, D, the perpendicular ion viscosity, µ,
and the parallel viscosity. At this point, it is useful to shortly describe the forces that
equilibrate the plasma in the poloidal direction. These forces determine the dynamics (in
particular the rotation frequency) of the island in the y direction and play an important
role in both the NTM and error field penetration problem. In a frame of reference moving
with the island, we write the poloidal plasma momentum balance equation averaged over
y (to eliminate the pressure term) and integrated over x around the reconnecting surface:

∫
dS (∂t + v · ∇) vy = −ψ̃k

∫
dSJ sin(ky) + µ

∫
dS∂2

xvy +

∫
dSF̂y, (4)

where
∫

dS =
∫ x+

x−
dx

∮ d(ky)
2π

. The previous equation balances all the forces acting on

a stripe of plasma included between 0 ≤ ky ≤ 2π (the full ”poloidal” direction) and
x− ≤ x ≤ x+. The term on the left-hand side of Eq.4 is the plasma inertia (vy is the
”poloidal” component of the plasma velocity), the second term on the right-hand side is
the viscous force and the last term is a constant homogeneous force acting on the plasma
(i.e. unbalanced NBI). The first term on the right-hand side represents the electromagnetic
J×B force, and is obtained by using a constant-ψ approximation to describe the magnetic
island: ψ = x2/2 + ψ̃ cos(ky) (this implies that the island width is w = 4ψ̃1/2).

3. Mutual interaction between NTMs and turbulence

To investigate the mutual interaction between magnetic islands and turbulence it is con-
venient to introduce an electromagnetic approximation, which can be justified as follows.
For the short wavelength components (the turbulence), the magnetic fields generated by
the turbulent polarization currents must be negligibly small. This is the case whenever
β̂ = βL2

s/L
2
n ¿ 1 (β is the ratio between the thermal and the magnetic pressure, Ls is the

magnetic shear length, and Ln the density scale length). For the long wavelength com-
ponents (such as the magnetic island), by contrast, the electrostatic assumption requires

that the reconnection rate is slow [11], that is: C(∆′+ ∆pol)ρs/β̂ ¿ 1, where C = ηω∗/ρ4

is a measure of the plasma collisionality, ∆′ is the standard linear stability parameter
for the tearing mode [12], and ∆pol is the contribution of the internal polarization cur-
rents to the island evolution. Here ω∗ = v∗k is the electron diamagnetic frequency and
v∗ = cT/(eBzLn). Within these limit we ensure a separation of scale between the rate
of change of the island width and the drift frequency characterizing the turbulent modes.
This implies that we can set ∂/∂t ∼= 0 in Eq.2, thus describing the turbulent fluctuations
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Figure 1: Stability thresholds for the even and odd modes. The shaded region represents the
domain of instability of the odd modes and the thin, nearly vertical line bordering this shaded
region represents D̂odd(ω∗0, w). The remaining lines represent D̂evn(ω∗0, w) for ŵ = 0 (vertical
solid line), ŵ = 1 (dash-dotted line), ŵ = 1.5 (dotted line) and ŵ = 2.9 (dashed line).

with an Hasegawa-Wakatani model while the magnetic flux is given by the constant-ψ
approximation.

We first investigate how the turbulence is affected by the presence of a magnetic island.
A key question is how the presence of an island modifies the linear stability properties
of resistive drift waves (and therefore regulates the turbulence). A well-known effect of
magnetic islands is the tendency for the profiles of density and pressure to flatten inside
the separatrix [13]. Since the radial gradient of the background density is the source of
free-energy for the drift-wave instability, one expects the local flattening caused by the
presence of an island to have a stabilizing effect on the turbulence. In order to quantify
the consequences of this stabilizing effect without carrying out a 2D stability analysis,
we have numerically investigated equilibria with a 1D radial density profile, neq(x), that
is partially flattened in a region of width w around the neutral line. We have used the
model profile neq(x) = −x + (1− ω∗0)xe−2(x/w)2 and ϕeq(x) = −ux, where ω∗0 represents
the local diamagnetic frequency at the O-point. This profile can be thought as an average
over y of the actual 2D flattened profile. In self-consistent nonlinear simulations, we
expect that the degree of density flattening ω∗0 will depend on the island width as well as
the other parameters. Since this dependence is unknown a priori, however, we will treat
ω∗0 as an independent parameter. Figure 1 shows the dependence on D (for simplicity,
always assumed equal to µ), for selected values of w, of the critical inner density gradients
ωodd
∗0 and ωevn

∗0 for marginal stability against modes that are odd and even with respect to
the reconnecting surface. This figure shows that the stabilization threshold for the even
modes, ωevn

∗0 (D; w), depends sensitively on the dissipation D, the sensitivity becoming
greater as the island width increases. The stability boundary for the odd modes is best
characterized in terms of the critical diffusion Dodd, which is almost independent of ω∗0
because these unstable modes and the flattened component of the equilibrium field share
the same parity. Therefore, we find that for w 6= 0 the stability of the drift-waves is
determined by the island width w (the width of the flattened region) and the locally
reduced diamagnetic drift frequency ω∗0 (measuring the amount of density flattening) in
addition to the dissipation D = µ.

In order to gain some understanding of the nonlinear effects of turbulence on the is-
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Figure 2: (a)-(b)Perpendicular force F̂y acting on the island and (c)-(d) ∆pol versus imposed
velocity û for ŵ = 0.5 and ŵ = 2.9, respectively. The solid lines represent quiescent states
(parity enforced numerically) and the dashed lines are the time-averaged values in the turbulent
states. The vertical dashed (dotted) lines indicate rotationally stable (unstable) unforced states
for the quiescent island

land, we begin by investigating the response of the system to an island moving with an
imposed constant velocity, u. In a convenient frame of reference moving with the mag-
netic island, this is equivalent to impose a constant plasma velocity, vy = −u, far from
the resonant surface. With appropriate boundary conditions (see Ref.[8]) the LHS and
the viscous term at the RHS of Eq.4 disappear and the electromagnetic force induced
by the imposed island rotation is balanced by the volumetric external forces acting on
the plasma. As a consequence, when F̂y = 0, the u corresponds to the ”natural” is-
land velocity. The effect of the turbulence on the island stability is mediated by the
turbulent fluctuations of the polarization current and is measured by the parameter
∆pol(u, w) ≡ −(πψ̃)−1

∫ lx
−lx

dx
∫ π

−π
dy (J − 〈J〉ψ) cos y, where 〈·〉ψ represents the average

across an infinitesimal tube of flux ψ, and the radial integration is extended all over the
numerical box (of width 2lx). In our study we use an initial-value, finite-difference code
which employs a fully implicit multi-grid algorithm (4th order in space and 2nd order in
time) constructed using PETSc (Portable Extendible Toolkit for Scientific Computation).
The size of the numerical box is [−lx : lx,−π : π] with lx = 1 and the grid resolution is
100 × 112 points. In all our simulation we set C = 1, ρ = 0.15, Jeq = 1 and ω∗ = 0.01,

while D = µ, ψ̃ and u vary. Figure 2 shows F̂y and ∆pol as a function of the velocity,

û = u/v∗, for two different island widths ŵ = 0.5 and ŵ = 2.9, and for D̂ = µ̂ = 0.1 and

C = 1 [here ŵ = w/ρ, D̂ = D/(ω∗ρ2) and µ̂ = µ/(ω∗ρ2)]. The solid lines represent cases
where the odd parity of the fields is enforced, so that turbulence is artificially suppressed,
in agreement with the linear analysis presented above. The dashed lines represent time-
averaged values of F̂y and ∆pol in simulations where both parities are allowed to evolve.
The free rotation solutions correspond to the intersection of the force curves with the
x-axis (F̂y = 0) and are marked by vertical dashed lines. Turbulence is seen to eliminate
the free rotation solution at the electron diamagnetic frequency (black vertical dashed
line on the right), pushing the solution towards a more stable root (from û = 1 to ap-
proximately û = 0.75 for the island with ŵ = 2.9). Note, however, that at fixed frequency
the turbulence is destabilizing, as indicated by the fact that the dashed lines for ∆pol lie
above the solid lines for the quiescent plasma. By virtue of the frozen-in property of the
electrons, the reduction in rotation frequency corresponds to a reduction in the local dia-
magnetic frequency, i.e. to a density flattening that stabilizes the turbulence. Indeed, the
turbulent fluctuations are quenched when u is reduced, and the turbulent solution ceases
to exist (at û ∼= 0.4 for ŵ = 2.9). To summarize, we have observed that the turbulence
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Figure 3: (a) Time evolution of û for ŵ = 0.5 (solid line), ŵ = 2.9 (dashed line), and ŵ = 4.1
(dash-dotted line). (b) Change in ∆pol after a turbulence-induced transition versus the imposed
island width. The change occurs between the initial state with û = 1 and the final state. A
positive (negative) value indicates that the transition is destabilizing (stabilizing).

induces transitions that slow down the ”poloidal” rotation of the magnetic island and, for
sufficiently large islands, lead to quiescent states. This picture is confirmed by simulations
where F̂y = 0 and the island rotation frequency is allowed to evolve accordingly to Eq.4
[see Fig.3(a)]. The net effect of these transition is stabilizing for sufficiently large islands
(ŵ > 3.2 for the case treated here). By contrast, our results show that islands of width
comparable with the turbulent eddies can be destabilized by the turbulence [see Fig.3(b)].

4. Diamagnetic effects on error field penetration

In this section we discuss the penetration in the plasma of an external magnetic field, gen-
erated by coil misalignment or imposed, in presence of diamagnetic effects (i.e. pressure
gradients). The plasma response to a static external magnetic perturbation is governed
by ideal MHD everywhere but in a narrow layer around the resonant surface where the
helical component of the equilibrium magnetic field vanishes. The calculation is thus
split between an ideal ”outer” and a resistive ”inner” solution, where the more dissi-
pative effects are investigated in a simplified geometry. The problem is completed by
matching the two solutions over the region where they overlap. When the flow shields
the penetration of the wall perturbation, the inner response can be described by linear,
constant-ψ layer physics, and is characterized by a complex quantity used in the matching,
∆ = −(2πψ̃0)

−1
∫∞
∞ dx

∮
d(ky)Je−iky, where ψ̃0 is the value of the fundamental eigenfunc-

tion of the magnetic flux at the reconnecting surface and J is calculated from the linear
layer theory [3] and depends on the physical model used. In the standard theory, the
quantity ∆ depends on the rotation velocity of the plasma at the reconnecting surface
relative to the external magnetic perturbation, v. More precisely, when diamagnetic and
Finite Larmor Radius (FLR) effects are considered, it can be shown that ∆ is a function
of the quantities: Q = v/δ, Q∗ = v∗/δ, P = µ/η, R = ρ/δ, where δ = (η/k)1/3 [14].

Conveniently, ∆ can be used to determine the effective penetration: (w/wvac)
2 = ∆′

coil/|∆−
∆′

mode|, where w is the penetrated island width, wvac is the island width in the absence
of the plasma, ∆′

mode and ∆′
coil are real numbers that depend on the equilibrium config-

uration (see Ref.[3]). In order to determine the amount of penetrated flux, for a given
set of physical parameters, it is therefore necessary to evaluate the velocity Q. This can
be done by applying the ”poloidal” momentum balance equation Eq.4 (with F̂y = 0) to
the inner region. In the standard theory, the balance between the electromagnetic force
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Figure 4: (a) The solid line shows the theoretical electromagnetic force and the dashed (dash-
dot) straight lines the viscous force for a case with wvac = 0.4 (wvac = 0.1265) and different
wall velocities: Q0 = {0.1, 0.25, 0.4, 0.5}. Squares and circles are the result of the numerical
simulations for Q0 = {0.1, 0.25, 0.4, 0.5} and wvac = 0.4 and wvac = 0.1265, respectively. (b)
Fraction of penetrated magnetic flux for the same cases described above.

(which is proportional to the imaginary part of ∆ and therefore depends on Q), and the
viscous force (dependent on the difference between Q and the velocity at the wall, Q0)
provides a nonlinear implicit relation for v. This relation assumes that the contribution
of the (v · ∇)vy term is negligible. However, when diamagnetic effects are included in the
theory and v is between the ion and the electron diamagnetic frequency, the magnetic
island can excite drift waves, which can contribute to the momentum balance, thus mod-
ifying the standard picture. In particular, the waves act as a drag on the island and take
the velocity at the reconnecting surface toward the electron diamagnetic velocity. This
quasilinear effect is more important for larger islands, and it facilitates the penetration of
the wall perturbation.

To verify this picture, we performed fully nonlinear electromagnetic simulations with
the same code described in the previous section (with lx = 2 and a grid of 128 × 64
points). The physical parameters are fixed and set to: P = 0.2, R = 1.2, Q∗ = 0.75
and δ = 0.1. Our results are shown in Fig. 4(a), which is a graphic representation of the
”poloidal” momentum balance. Here the solid line describes a quantity proportional to the
electromagnetic force, and the dashed (dash-dot) straight lines the viscous force for cases
with wvac = 0.4 (wvac = 0.1265) and different wall velocities: Q0 = {0.1, 0.25, 0.4, 0.5}.
The shape of these curves is obtained using theoretical models which include FLR and
diamagnetic effects [14, 15]. If the electromagnetic and viscous forces are the only relevant
forces, the intersection of their characteristic curves gives the velocity of the plasma at
the reconnection surface. However, when the plasma velocity is in the diamagnetic band
(0 ≤ Q ≤ Q∗), our simulations show excitation of non localized waves. Furthermore, the
characteristic points obtained from the simulations (represented by squares and circles
for wvac = 0.4 and wvac = 0.1265, respectively) agree with the theoretical predictions
only when the emitted waves are small (i.e. when the wall perturbation is small and Q
is far from Q∗), or when they are not present at all (Q > 0.75). Figure 4(b) shows the
theoretical (solid line) and numerical penetration fraction. In the presence of drift waves,
the flux penetrates even if the standard theory predicts shielding.
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5. Conclusions

We have investigated the interaction between drift waves and magnetic reconnection in
two contexts: the dynamics of the NTMs and the penetration in the plasma of an external
magnetic perturbation. In the first case, we have found that turbulent electrostatic fluc-
tuations induce transitions in the rotation frequency of the NTM. The consequent slowing
down of the magnetic island has a net destabilizing effect on small islands (w ∼= ρ), while
it becomes stabilizing for larger islands (w À ρ). In the second case, we show with nu-
merical simulations that the standard theory of error field penetration fails to capture the
penetration threshold when drift waves are present in the system. Indeed, the waves act
as a drag on the magnetic island and, through a quasilinear mechanism, can facilitate the
penetration of the wall magnetic perturbation.
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