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Abstract. Vertical instability of a tokamak plasma can be controlled by nonaxisymmetric magnetic fields 
localized near the plasma edge at the bottom and top of the torus. The required magnetic fields can be produced 
by a relatively simple set of parallelogram-shaped coils. 
 
The tokamak is the most widely used device in large scale experimental facilities for magnetic 
confinement fusion research. In this paper we show that vertical instability of the tokamak 
plasma, which imposes an important constraint on tokamak design, can be controlled by 
nonaxisymmetric magnetic fields localized near the plasma edge at the bottom and top of the 
torus. The required magnetic fields can be produced by a relatively simple set of 
parallelogram-shaped coils (Fig. 1) placed near the bottom and top of the torus. 
 
Since the late 1960’s, the tokamak has evolved from an axisymmetric device with circular 
cross-section to an axisymmetric device with strongly shaped cross-section. It is natural to ask 
whether it would be advantageous to add some nonaxisymmetric shaping. There are already 
some experimental studies in that direction showing that edge localized modes (ELMs) can be 
stabilized using non-axisymmetric fields.[1] This was also the line of reasoning, in part, that 
motivated the physics design studies for the US National Compact Stellarator Experiment 
(NCSX), presently under construction.(Ref. [2] and references therein.) 
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Fig. 1.  Parallelogram-shaped coils for stabilizing the vertical mode in a tokamak. 
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This paper focuses on the stabilization of the vertical mode in tokamaks. As we will discuss 
below, the free energy driving the vertical instability in tokamaks increases with increasing 
vertical elongation of the plasma cross-section. On the other hand, empirically derived global 
confinement scaling laws for tokamaks find that confinement improves with increasing 
vertical elongation. Similarly, the Troyon scaling law for plasma stability predicts an increase 
in the β limit for ballooning and kink modes with increasing elongation. There is evidence 
that the benefits of increasing elongation diminish and perhaps disappear altogether at 
sufficiently high elongation[3], but the elongation at which this occurs is well above that at 
which the largest present day tokamaks can routinely operate. Contemporary tokamaks 
typically operate in a regime where a conducting wall surrounding the plasma stabilizes the 
vertical mode, with the mode remaining unstable on the resistive time scale of the wall. 
Feedback stabilization is used to suppress the resistive mode. Disruptions due to vertical 
instability are sufficiently common that they have been given a name and an acronym: vertical 
displacement events (VDEs). These may be caused by accidental crossing of the ideal 
instability threshold during a shot, failure of the feedback control system, etc. Disruptions 
initiated by other instabilities often culminate in a vertical mode. In these cases, a sudden loss 
of thermal energy and a redistribution of the current destabilize the vertical mode. (See Ref. 
[4] and references therein). 
 
The nonaxisymmetric fields discussed in this paper are not stellarator fields, in the sense that 
they do not have closed vacuum flux surfaces (they do not produce closed flux surfaces in the 
absence of a plasma current), and they do not generate vacuum rotational transform. Three-
dimensional magnetic fields provide control over field line properties not available in 
axisymmetric configurations such as tokamaks. In an axisymmetric configuration, field lines 
cannot circle the magnetic axis in the absence of a net toroidal plasma current. The absence of 
vacuum flux surfaces is closely related to the absence of vacuum rotational transform. In 
order to trace out vacuum flux surfaces, it is necessary for the magnetic field lines to wind 
around in the poloidal direction. The generation of vacuum flux surfaces and rotational 
transform requires global three-dimensional magnetic fields, which employ the control 
provided by nonaxisymmetry along the entire field line trajectory. In this paper, we take 
advantage of the control provided by three-dimensional fields to target the physics of the 
vertical instability more directly, providing stabilization by a localized three-dimensional 
magnetic field that does not produce vacuum flux surfaces. 
 
Stellarator fields are generally produced either by helical coils that wind around the plasma, or 
by modular coils, which have the appearance of three-dimensionally deformed toroidal field 
coils. The coils that we describe here for generating our localized three-dimensional field are 
simpler, and they do not link the plasma. They could potentially be installed on existing 
tokamaks. 
 
The physical mechanism driving the vertical instability can be understood by treating the 
plasma as a large aspect-ratio, current-carrying conductor in a vertical magnetic field. (See 
Ref. [7] and references therein.) Adopting the conventional cylindrical coordinates (R,φ, z), φ 
is the toroidal angle, and R is the radial coordinate. Take the vertical field to be approximately 
uniform, with a small quadrupole component added to control the plasma ellipticity. If the 
conductor is displaced slightly in the vertical direction, the sign of the resulting force is 
determined by the sign of /RB z∂ ∂ . For an axisymmetric externally generated vacuum field, 

0∇× =B  relates this to the sign of /zB R∂ ∂ , which is in turn determined by the sign of the 
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quadrupole field. A quadrupole field that increases the vertical elongation produces a 
destabilizing change in /RB z∂ ∂ . 
 
Allowing the magnetic field to be nonaxisymmetric decouples /RB z∂ ∂  from /zB R∂ ∂ . To 
stabilize the vertical mode, we add a nonaxisymmetric field whose appropriately averaged 
value of /RB z∂ ∂  in the plasma is stabilizing. 
 
Fu has analytically calculated the stabilization of the vertical mode by a stellarator field for a 
large aspect-ratio, low β, elliptically shaped plasma using the stellarator expansion[5]. The 
analytical stability criterion was found to agree well with numerical calculations[6]. The 
calculation described in this paper differs from that of Ref. [5] in using a localized 
nonaxisymmetric magnetic field produced by a relatively simple set of coils. As already 
mentioned, the nonaxisymmetric field does not produce vacuum rotational transform. As in 
Ref [5] (and as in much of the analytical work on tokamak vertical instabilities (Ref. [7,8] and 
references therein.)) we assume a large aspect ratio plasma that is well approximated by a 
cylindrical plasma with periodic boundary conditions at z=0 and 2z L Rπ= = , we take β = 0, 
and we assume a uniform equilibrium current density in the plasma. In the following, when 
we use the term “nonaxisymmetry” in the context of the large aspect ratio limit it should be 
taken to mean “z-dependent”. We pursue the analytical calculation with these simplifying 
assumptions for the purpose of demonstrating the physics of the stabilization, and to obtain an 
estimate of the required magnitude of the nonaxisymmetric field for stabilization, indicating 
that application of the effect appears to be reasonable. Numerical calculations will be required 
for more detailed evaluation and design optimization. 
  
To construct coils, we first consider surface currents on two ribbons defined by y = ± yc, -w/2 
≤ x ≤ w/2, where we take the y axis to be in the vertical direction, the x axis in the horizontal 
direction, and the z axis to be parallel to the cylindrical plasma. To simplify the calculations, 
we will assume that w is sufficiently large that edge effects can be neglected in calculating the 
field in the plasma. 
 
Letting K denote the surface current, it follows from ∇⋅ K = 0 that we can write K in terms of 
a current potential, K = ˆ( )uy∇× , where u is taken to vanish everywhere except on the two 
ribbons. Specified in this form, the current is explicitly divergence free. We will focus 
primarily on the surface current on the upper ribbon and the field produced by that current. 
The surface current on the lower ribbon and the associated field will follow by imposing 
stellarator symmetry. This symmetry property, which is generally satisfied by stellarators, 
dictates that u-(x,z) = u+(x,-z), where the “+” and “-“ subscripts denote the current potentials 
on the upper and lower ribbon respectively. We will suppress the “+” subscript in the 
following when we are focusing on the upper ribbon. We will be interested in relatively 
localized fields, whose magnitude dies off rapidly as a function of distance from the coil, so 
that the nonlinear effects of the magnetic fields produced by the two sets of coils will be 
important in nonoverlapping regions, allowing us to calculate the nonlinear effects due to the 
two sets of coils separately. 
 
In the interior of the upper ribbon we take u to depend on x and z only through x - α z, 
u(x,z) = u(x - α z), where α is a constant. Let N be the number of periods in the toroidal 
direction. That is, u is periodic in z with periodicity length 2 /R Nπ , N ≥ 1. Fourier 
decomposing with respect to z, and taking u to be even in z, we get 
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1
( , ) cos[ ( )]x zn

u x z n k x k z∞

=
= +∑  where /zk N R= , /x zk k α= − . Each harmonic corresponds 

to a surface current in the ribbon interior that is in the ˆˆ( )z xα± +  direction, with the amplitude 
varying sinusoidally as a function of x - α z. There is a delta function current along the edges 
of the ribbon at w / 2x = ± that connects the current in the alternating directions and preserves 
∇⋅ K = 0. If 0 0u ≠ , the delta function current on each edge has a nonzero axisymmetric 
component. We assume that the contribution of this axisymmetric current to the field is 
canceled by nearby axisymmetric poloidal field coils. 
 
The vacuum field produced by the surface current can be expressed in terms of a scalar 
potential, χ= ∇B . From 0∇⋅ =B  it follows that 2 0χ∇ = . The jump conditions across the 
ribbon at cy y= are ˆ[[ ]] 0y ⋅ =B  and 0ˆ[[ ]]y μ× =B K , where [[ ]] denotes the difference 
between the value just above yc and just below yc. For y < yc, and w/2 - |x| sufficiently large 
relative to |yc-y| we get 

1
( , , ) exp[ ( )]cos[ ( )]n c x z

n
x y z nk y y n k x k zχ χ

∞

=

= − +∑ , 

where xk and zk  are as defined above, 2 2 1/ 2( )x zk k k= + , and 0 / 2n nuχ μ= . We will make the 
simplifying assumption that w is sufficiently large that we can use this expression throughout 
the region of interest in the plasma. 
 
For values of k that are of interest, at most a few of the low order Fourier modes in Eq. (2) 
have a significant effect on the field in the plasma. The magnitudes of the higher harmonics 
decrease rapidly as a function of distance from the coils. This gives us some freedom in our 
choice of the nu  for designing a set of coils. A particularly simple set of coils can be obtained 
if u is taken to have the form of a square wave, 

( ) [ ]1
1

1

cos (2 1)( )
( , ) 1

(2 1) 4
n x z

n

n k x k z
u x z u

n
π∞

+

=

⎧ ⎫− +
= − −⎨ ⎬−⎩ ⎭

∑ . 

 
This gives a set of filamentary coils in the shape of parallelograms. 
 
For the plasma equilibrium, we use the stellarator expansion.[11] Let Bc be the field produced 
by the nonaxisymmetric coils, Bp the field produced by the plasma current in the absence of 
Bc, and tB z�  the field produced by the toroidal field coils. The stellarator expansion assumes 

t c pB B B>> >> . To zeroth order, the magnetic field line trajectories are straight lines in the z 
direction. To first order, each field line sees a sinusoidally varying cxB  and Bcy along its path, 
causing the field lines to spiral helically about the unperturbed orbit. The order 2

cB  effect 
arises from the fact that the helical field line trajectories see a larger Bc perturbation when 
they are at larger values of y. This produces a net drift of the field lines in the ˆ±x  direction, 
analogous to the well known grad-B drift of particle trajectories in a magnetic field. A simple 
perturbation analysis of the field line trajectories breaks down in second order, because the 
drift is a secular contribution that becomes larger than the first order terms. The secularity can 
be handled by standard multiple scale methods, which incorporate it into the zeroth order term. 
The method of averaging[12] is one such multiple scale method. It averages the second order 
effects over a period and constructs an effective axisymmetric field that includes these effects. 
We will denote this averaged field by cB . The validity of this treatment requires that Δx, the 
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drift of the field line over one period, satisfy 1xk xΔ � . This gives an additional condition for 
the validity of the stellarator expansion: ( / )( / ) 1x z ck k B B � . 
 
To simplify the stability analysis, we take ( ) 1ck y a− >> , where a is the minor radius of the 
plasma, so that only the lowest harmonic of Eq. (2) needs to be retained in the plasma. The 
averaged nonaxisymmetric field is then calculated to be ˆc cψ=∇ ×B z , with 

2
c 1exp(2 ) /(2 )x z tky k k k Bψ χ= − . The constant cψ  surfaces are surfaces of constant y. As 

already mentioned, the nonaxisymmetric magnetic field does not produce closed vacuum flux 
surfaces. 
 
Taking Bt > 0, the averaged nonaxisymmetric field is in the x̂∓  direction, depending on the 
sign of /x zk k , and its magnitude increases with increasing y. From the discussion of the 
physics of the vertical instability, above, we expect that this will be stabilizing for the vertical 
mode if / 0z x zj k k > , where jz is the z component of the current density. To provide a more 
rigorous and quantitative evaluation of the vertical stability, we use the energy principle[13] 
in the form vpW W Wδ δ δ= + , where ( )2 3

0(1/ 2) /p
p

W Q d xδ μ= − ⋅ ×∫ ξ j Q  is an integral over 

the plasma volume, (1) 2 3
v V 0

v

(1/ 2) (( ) / )W B d xδ μ= ∫  is an integral over the vacuum region, 

( )≡ ∇× ×Q ξ B ,ξ is the plasma displacement, and (1)
VB  is the perturbed field in the vacuum 

region. The pressure has been taken to be negligible In evaluating vWδ , we will take the 
boundary conditions at infinity, with no stabilization due to conductors outside the plasma. 
 
It follows from the work of Johnson and Greene [14] that, under the assumptions of the 
stellarator approximation, the equilibrium field B can be replaced by p c+B B  in the above 
expression for pWδ . The perturbed vacuum field is determined by the perturbed plasma 
boundary, which in turn is determined by p c+B B and ξ . 
 
We will assume that the plasma cross-section is approximately circular, with a small elliptical 
perturbation of the boundary shape and a small perturbation of the boundary shape due to the 
nonaxisymmetric field. It will be convenient to use both cylindrical coordinates ( , , )r zθ  and 
Cartesian coordinates ( , , )x y z in the stability calculation. The algebra will be simplified 
somewhat by taking 0θ =  to lie along the y axis, so that cos( )y r θ= , sin( )x r θ= − . 
 
Stability is determined by the sign of Wδ , with the equilibrium unstable if 0Wδ < . For the 
zeroth order equilibrium, a cylindrical plasma with circular cross-section, we Fourier 
transform ξ  with respect to z and θ. The cross terms in Wδ between the nmξ  with different m 
and/or n vanish, and Wδ can be evaluated independently for each nmξ , where m is the poloidal 
mode number and n is the toroidal mode number. For an equilibrium with uniform current 
density, 0Wδ >  for n = 0, m > 1. For n = 0, m = 1, the 0,1( )rξ which minimizes 

Wδ corresponds to a rigid shift of the plasma, and gives 0Wδ = . 
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Introducing a small nonaxisymmetric field, as described above, plus a small axisymmetric 
elliptical distortion of the plasma boundary, the averaged equilibrium field is 

0ˆ ˆp c Bψ+ = ∇ × +B B z z , where 

 [ ]{ }2 2
0 e c1 2 cos(2 ) exp[2 ( )]r a k y aψ ψ ε θ ε= − + − , 

0ψ  is a constant, and 

 
2

21
0 c 2

1
2

kax

t z

k k e
B a k
χψ ε = − . 

 
For c 0ε = , the equilibrium is vertically unstable when e 0ε < , corresponding to vertical 
elongation of the plasma.[7] To calculate the stability for c 0ε ≠  we evaluate pWδ  and vWδ . 
The averaged equilibrium field that goes into these expressions is axisymmetric, so we can 
Fourier transfer ξ  as a function of /z Rφ =  and analyze the stability independently for each 

nξ . We are interested in 0n = . 
 
It can be expected that the displacement ξ  that minimizes Wδ  will depend on cε . Denote the 
field for the circular cylinder by 0B . For 0=B B , restricting consideration to n = 0 
displacements, Wδ  has a local (and global) minimum at 0 ˆξ=ξ y . It follows that if we add an 
O( )ε  perturbation to 0 ˆξ=ξ y , the resulting change in Wδ  is 2O( )ε . On the other hand, we 
will see that an O( )ε  perturbation of 0B  produces an O( )ε  change in Wδ . It follows that we 
can evaluate the O( )ε  change in Wδ  using 0 ˆξ=ξ y . This result is closely related to the well 
known property of the variational formulation of eigenvalue equations that an O( )ε  error in 
the eigenfunction gives an 2O( )ε  error in the eigenvalue. 
 
The perturbed field in the plasma produced by the displacement 0 ˆξ=ξ y  is (1) (1)

p pψ= = ∇×B Q , 

where [ ]{ }(1) 2
p 0 0 0/ 2 1 2 cos exp[2 ( )]e cy r ka k y aψ ξ ψ ξ ψ ε θ ε= − ∂ ∂ = − − + − . 

The continuity of ˆ ⋅n B  at the plasma-vacuum interface (where n̂  is the unit normal to the 
interface) is equivalent to requiring (1) (1)

V pψ ψ=  at the interface, where (1) (1)
V Vψ=∇×B  in the 

vacuum region. To O(ε), the plasma boundary is given by 
{ }1 cos(2 ) (1/ 2) exp[2 (cos 1)]e cr a kaε θ ε θ= + − − . Note that the nonaxisymmetric field 

decreases the plasma width in the vertical direction. For 1ka�  the effect is localized near 
x=0, and we will see that for 1ka�  the reduction in width is small compare to the effect of 
the eε  term. 

 
In the following we make repeated use of the identity 
 ( ) ( ) 0 1

exp 2 exp 2 cos (2 ) 2 (2 )cos( )jj
ky kr I kr I kr jθ θ∞

=
= = + ∑ . 

 
In the vacuum region, (1)

V 0∇× =B  gives 2 (1)
V 0ψ∇ = , so that  

 (1) (1)
V V0

( / ) cos( )m
mm

r a mψ ψ θ∞ −
=

=∑ . 

To lowest order, matching (1) (1)
V pψ ψ=  at the plasma boundary gives (1)

V 0 02 cosaψ ξ ψ θ= − . The 

1m ≠  terms in (1)
Vψ  are O(ε). It is straightforward to verify that the contributions of the 1m ≠  



7 

terms to VWδ  are O(ε2). It follows that we only need concern ourselves with the 1m =  term in 
(1)
Vψ . Matching at the boundary gives 

 ( ){ }(1) 2
V1 0 0 1 0 22 exp( 2 )[2 2 (2 ) (2 )] (1 )]c eka kaI ka I ka I ka aψ ξ ψ ε ε= − − − − − , 

where Ij is the modified Bessel function of the jth kind. 
 
Having calculated the perturbed field in the plasma and in the vacuum region, we can now 
evaluate Wδ . Taking into account the nonaxisymmetric coils at the bottom of the torus as 
well as those at the top we pick up an extra factor of 2 in front of cε . We find 

( ){ }2
0 0 1 0 24 ( ) exp( 2 )[2 2 (2 ) 2 (2 )]p c eW V ka kaI ka I ka I kaδ ξ ψ ε ε= − − − − . 

For large ka, Ij(2ka) ≈ exp(2ka) / (4πka)1/2, giving 1/ 2 1/ 2
0 04 ( ) ( / )p c eW V kaδ ξ ψ ε π ε⎡ ⎤≈ −⎣ ⎦ . Note 

that the sign of cε  matters. Depending on the sign, the nonaxisymmetric field can either 
stabilize or destabilize the vertical mode. The sign is determined by the sign of the pitch of the 
coil filaments relative to the sign of the pitch of the magnetic field lines, which in turn 
determines the sign of /xB z∂ ∂  relative to that of zj . 
 
Expressing the stability condition in terms of the maximum value of Bc/B in the plasma ≡ 
maxp(Bc/B) and in terms of κ, we get  
 2 1/ 2max ( / ) ( / )( / )( ) ( 1) /(2 )p c z xB B a R k k ka qπ κ> −  
for stability. With the condition on the validity of the stellarator expansion that 
( / )( / ) 1x z ck k B B � , we get 1/ 2max ( / ) ( / )( ) ( 1) /(2 )p cB B a R ka qπ κ −� . This suggests that for 

/ 3R a ≈  and 3q ≈  we need max ( / ) .1p cB B >  to see a substantial stabilization effect. 
 
Finally, we can conjecture about the nonlinear behavior of the vertical instability in the 
presence of the nonaxisymmetric field. The Wδ  analysis calculates the response to an 
infinitesimal perturbation, and it depends on /cxB y∂ ∂ . A finite vertical excursion of the 
plasma sees an exponential increase in cxB , and this suggests that the nonaxisymmetric field 
can prevent large vertical excursions of the plasma even for equilibria that are linearly 
unstable to the vertical mode. This also suggests that, although the linear stabilization 
described here can be obtained with only a single set of nonaxisymmetric coils either at the 
top or bottom of the plasma, it is likely desirable to have both sets of coils for suppression of 
finite vertical excursions. 
 
In conclusion, the analysis of this paper finds that the addition of a relatively simple set of 
parallelogram-shaped nonaxisymmetric coils can improve the stability of tokamaks to vertical 
modes, providing stable equilibria with more highly elongated cross-sections and potentially 
leading to devices with improved performance in terms of beta limits and/or confinement. 
Furth-Hartman coils are calculated to have essentially the same vertical stabilization effect as 
the simple parallelogram-shaped coils described here, so that the vertical stabilization 
demonstrated experimentally by Furth-Hartman coils supports the feasibility of stabilizing 
vertical modes by the simpler coil set. The physical picture that we have presented for the 
stabilization suggests that the stability properties will not depend on the precise shape of the 
coils, so that the coil winding surface can be curved to conform to the local shape of the 
plasma, if desired, or curvature of the coils can be introduced to optimize relative to other 
considerations. It can also be argued[16] that the simple parallelogram coils we propose 
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should have the same effect on vertical modes as Furth-Hartman coils[9], whose effect on the 
vertical instability has been demonstrated experimentally.[10] 
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