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Abstract. The NIMROD and M3D / M3D-C1 codes now each have both a resistive MHD and a two-fluid (2F) 
capability including gyroviscosity and Hall terms.  We describe: (1) a nonlinear 3D verification test in the 
resistive MHD regime in which the two codes are in detailed agreement , (2) new studies that illuminate the 
effect of two-fluid physics on spontaneous rotation in tokamaks, (3) studies of nonlinear reconnection in regimes 
of relevance to fusion plasmas with peak nonlinear reconnection rates that are essentially independent of the 
resistivity, and (4) linear two-fluid tearing mode calculations including electron mass that agree with analytic 
studies over a wide range of parameter regimes. 
 
1. Introduction 
 
The SciDAC1 Center for Extended Magnetohydrodynamic Modeling (CEMM2) develops 
advanced computational models for the macroscopic dynamics of fusion-grade plasmas and 
implements these on some of the world’s most powerful computers.  The center is built 
around the 3D nonlinear simulation codes NIMROD[1] and M3D[2].  A new variant of 
M3D, called M3D-C1 [3], uses a split-implicit time advance applied to high order finite 
elements with C1 continuity.  Here we describe recent verification and convergence tests 
related to resistive and two-fluid equilibrium, reconnection, and stability. 
 
2. Sawtooth phenomena in a small ohmic tokamak 
  
Both NIMROD and M3D have calculated the nonlinear evolution through three complete 
sawtooth cycles using the parameters of the CDX-U tokamak in the resistive MHD regime 
and find excellent agreement between the two codes in most all details of the simulation [4,5]. 
 
CDX-U is a small (R0=33.5 cm), low-aspect-ratio (R0/a=1.5) tokamak experiment with a 
typical operating temperature of about Te=100 eV.  Modelling 3D macroscopic activity in 
the experiment requires information on profiles, sources, and transport coefficients. The 
equilibrium profiles and inferred sources are provided by running the 2D free boundary flux-
surface averaged transport timescale code TSC [6] to match typical traces of the plasma 
current Ip(t) from the experiment. A sequence of experimentally relevant profiles, each at a 
fixed time, are obtained from the TSC computation as described in [5].  As the plasma 
current increases and the central current density also increases in the TSC calculation, the 
central safety factor q0, a measure of the pitch of the local magnetic field, falls monotonically 
in time.  For the initial equilibrium used in the benchmark, we began from a TSC 
equilibrium where the central safety factor had fallen to q0=0.82 and transferred this to be 
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used as the initial state for the 3D calculations.  The codes used a non-evolving Spitzer 
resistivity profile of the form η ∝ 3/2

eqT − , normalized so that the central Lundquist number 
S=1.94×104. The viscosity was held constant and uniform with a central Prandtl number 
PN≡μ/η of 10. A high, uniform, and constant value of κ⊥ was chosen, equivalent to a physical 
value of approximately 200 m2/s. The two codes differ in their implementation of parallel heat 
diffusion, with M3D using an “artificial sound wave” method in which a hyperbolic rather 
than parabolic operator convects heat along the field while NIMROD evaluates the actual 
anisotropic diffusion term.  The parallel heat conduction parameter could therefore only be 
approximately similar in the two runs; it was chosen to correspond to an electron thermal 
speed six times the Alfvén speed.  Source terms were added in the field and energy equations 
to drive these respective profiles toward their initial values. 
 
The results obtained are shown for comparison in FIG. 1.  After the first sawtooth cycle, the 
code results become relatively independent of the initial conditions.  For each crash, the n=1 
component first becomes linearly unstable and drives the other toroidal modes with n>1 
through nonlinear coupling.  We find that substantial m>1 islands are formed during the 
crash, but these quickly re-heal during the ramp phase.  Even though many surfaces breakup 
during the crash phase, the temperature does not completely flatten due to the presence of 
residual surfaces and cantori which form effective heat barriers [7].    
 

 
                 time (μS)                               time (μS) 
FIG 1: Time history of normalized kinetic energy by toroidal mode number during the first three 
sawtooth crashes in this iteration of the nonlinear CDX-U benchmark.  
 
In order to define this problem in a way that is accessible to other 3D simulation codes, we 
propose that in the future, the codes be initialized with a semi-analytic definition of a 
stationary equilibrium configuration that closely approximates the experimental conditions.  
This can be done by specifying the pressures and densities as quadratic functions of the 
poloidal fluxψ, and giving a parametric form for the plasma boundary.  Using the neo-
classical resistivity and specifying a loop voltage Vloop, JSOLVER [8] can be used to calculate 
a unique resistive stationary equilibrium that satisfies: 2 /loopV πη φ= < ⋅ > < ⋅∇ >J B B  , 
where the brackets denote flux surface average.  The perpendicular heat conduction profile is 
initialized self-consistently to provide steady state profiles: 

2 22
0/ /2loopV R Tκ ψ πμ ψ⊥ ′= < ∇ > < ∇ >  , where the prime denotes the derivative with 

respect to the poloidal flux function ψ .  After the first sawtooth cycle, the code results 
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should again become relatively independent of the initial conditions although the loop voltage 
remains as a boundary condition and the behaviour is expected to depend on the initial 
pressure profile through the function κ⊥. 
 
3. 2F NSTX equilibrium including flows  
 
We have obtained axisymmetric steady-states of a comprehensive, dissipative two-fluid 
model applied to NSTX3 geometry plasmas by integrating the nonlinear dynamical equations 

using M3D-C1 [9]. These solutions 
go beyond previous calculations in 
several ways. First, dissipative 
effects such as viscosity and 
resistivity are included, which are 
not present in most other 
numerical methods for obtaining 
such steady-states [10-12].  Our 
results also go beyond those 
obtained using other methods 
which do include dissipative 
effects, because the implicit time-
step method in M3D-C1 allow us 
to carry the time-integration 
sufficiently far so that the results 
are stationary on all physical time-
scales present in the problem. 
Second, these simulations include 

realistic inductive current drive, Ohmic heating, and particle injection models, and may 
therefore reach a realistic steady-state in the presence of dissipation. Third, the model used 
here includes both parallel viscosity and gyroviscosity [13], which have important  

  
FIG 3: The steady-state toroidal velocity in two simulations with density injection on the low-field 
side.  On the left, gyroviscosity has been omitted; on the right, it is included. 
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FIG 2: The Surface-averaged radial velocity from 
simulation results (points) compared to Pfirsch-Schlüter 
theory (lines) for a range of resistivities. 
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implications for the steady-state flows, and which have not been included in any other studies 
of this type. Finally, two-fluid effects are also included, which are not present in any 
comparable published work. 
 
In these solutions, a number of interesting results have been found, some of which have not 
previously been observed or predicted. The surface-average of the radial flows have been 
found to be in excellent agreement with Pfirsch-Schlüter theory (see FIG 2).  It is also found 
that strong, up-down asymmetric edge flows may exist in highly resistive scrape-off layers, in 
accordance with previous simulation results [14].   
 
Gyroviscosity is found to play an important role in the steady-state flows; driving toroidal 
flows in the presence of a density source (see FIG 3). The magnitude and direction of the 
toroidal gyroviscous force is dependent on the position of the density injection. The inclusion 
of gyroviscosity is found also to result in strong, regular oscillations in highly resistive 
steady-states. Parallel viscosity has been demonstrated to damp poloidal flows significantly, 
as previously anticipated [15]. 
 
Future work will focus on moving to more realistic parameter regimes.  Modifications to the 
electron parallel viscosity which allow the inclusion of some important collisionless 
neoclassical effects, such as the bootstrap current, will be explored. More sophisticated 
transport models, which should allow the simulation of H-mode plasmas, will also be 
incorporated. Furthermore, we plan to use M3D-C1 to explore the three-dimensional linear 
stability of the axisymmetric equilibria that we have obtained. This work should facilitate an 
understanding of the effect of flows, finite Larmor orbits, and other non-ideal effects on the 
linear growth of ELMs and other instabilities. 
 
4. Nonlinear 2F reconnection with an arbitrary guide field:  
 
We have benchmarked NIMROD and M3D-C1 by performing convergence studies on the 
GEM two-fluid nonlinear reconnection problem.  Results for the M3D-C1 code applied to the 
zero guide field original GEM challenge case [16] are shown in FIG 4 and FIG 5.   
 

In this study we used 
the geometry and units 
of Ref. [16] with 
normalized resistivity 
η=0.005, viscosity 
μ=0.05, and thermal 
conductivity κ=0.02.  
The time-step Δt varied 
from 0.05 to 0.20 to 
satisfy convergence 
criteria, with an average 
value of 0.10.  A 
triangular mesh with 
uniform node spacing 
of h was used with the 
number of nodes 
varying from 1202 to 

FIG 4:  Contours of the toroidal current density at selected times.  Note 
that a transition occurs between the time of t=16 and t=32. 



                        TH/P9-29 

 5

P
ol

oi
da

l F
lu

x 
(ψ

)

0

1

2

3

4

B0 = 0
B0 = 1
B0 = 2
B0 = 5

R
ec

on
ne

ct
io

n 
R

at
e 

(d
ψ

/d
t)

0.0

0.1

0.2

0.3

0.4

B0 = 0
B0 = 1
B0 = 2
B0 = 5

Time

0 20 40 60 80

C
en

tra
l D

en
si

ty

0.0

0.2

0.4

0.6

0.8

1.0

1.2

B0 = 0
B0 = 1
B0 = 2
B0 = 5
B0 = 10

Ki
ne

tic
 E

ne
rg

y

0

2

4

6

8

120 x 120
150 x 150
180 x 180
210 x 210
Resistive MHD

Time
0 10 20 30 40

R
ec

on
ne

ct
ed

 F
lu

x

0

1

2

3

4

1/h5
0 5e-12 1e-11 2e-11 2e-11

Fl
ux

 a
t t

=4
0

3.90

3.92

3.94

3.96

3.98

4.00

2102 as indicated.  A hyper-resistivity was included of strength λ=CHh2 with CH=di=1.0 as 
discussed in [3] to regularize the solution. 
 
We have extended the problem of 
nonlinear magnetic reconnection in a 
Harris current sheet to include a 
strong guide field to better 
approximate nonlinear reconnection 
in tokamaks and to obtain scaling 
relations and project resolution 
requirements to the ITER regime.  
Our interest is in the regime: 

S idδ ρ , 1 ~ Pβ β  .  Here, 
δ  is the Sweet-Parker reconnection 
thickness, S idρ β=  is the ion 
sound gyro-radius, and i Pid c ω= is 
the ion skin depth.   In the absence 
of electron inertia, all calculations 

required an effective hyper-
resistivity λH proportional to di in 
order to resolve the singularity at the 
x-point. The reconnection rate 
decreases with increasing λH, but asymptotes to a value independent of λH.   

 
It can be seen from FIG 6 that the 
reconnection rate decreases markedly with 
increasing guide field.  This is partly due to 
the evolution of the density and the effect of 
the guide field in reducing compressibility.  
As seen in the bottom frame of FIG 6, the 
density depletes in the reconnection region 
for the zero or small guide field case, thus 
increasing the effective di. This density 
reduction does not occur nearly as much 
when the guide field is increased.  If 
density evolution is not included in the 
simulation, we find that for fixed di, the 
guide field still reduces the rate of magnetic 
reconnection but not as dramatically.  We 
further find that increasing 25

3 0 0p Bβ ≡  
increases the reconnection rate.   
 
We have performed a series of calculations 
varying parameters in the range: guide field: 

00 5B≤ ≤ ; ion skin depth: 1 8id≤ ≤ ; 

central pressure: 00.25 1.0p≤ ≤ ; viscosity: 

FIG 5:  Convergence study in grid size with M3D-C1 
code for zero guide field two-fluid GEM recon-nection. 
Inset shows convergence as ~ h5 as expected. 

FIG 6: Guide field added to GEM reconnection 
problem dramatically reduces reconnection rate.
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0.005 0.05ν≤ ≤ ; resistivity: 0.0005 0.005η≤ ≤ . The density was held constant in these 
calculations since the initial conditions (of peaked density) were such as to make the density 
depletion the dominant effect when its evolution was included.  We performed a least 
squares fit of the maximum  reconnection rate for these constant density calculations to the 
formula: 

 
 
 
 
This gave the values A=.95, B=.45, C=-.33, D=.05.  The weak dependence on resistivity 
implies that resistivity is not a factor in 2F nonlinear reconnection when a high guide field is 
present.  These studies were done with a complete 8-field 2F model (without density 
evolution).  In order to relate to some previous studies, we have repeated some of the 
calculations with the reduced 4-field model [17].  We find that the 4-field model does a 
fairly good job at reproducing the evolution at high guide field strengths, but not as good at 
low field strengths.  
 
5. Two-fluid linear tearing in different parameter regimes: 
 
Tearing instabilities represent a balance of destabilizing equilibrium gradients and restoring 
responses at large scales with reconnection physics at small scales.  In two-fluid models, the 
reconnection scale interacts with larger scales through an intermediate response that is 
analogous to dispersive whistler-wave and kinetic-Alfven-wave (KAW) dynamics.  As 
summarized in Ref. [18], the response for a particular situation depends on the strength of the 
instability (measured by the tearing eigenvalue ′ Δ ) and on the size of the ‘sound gyroradius,’ 
ρs = cs Ωi , where cs is the ion acoustic speed and Ωi  is the ion gyroradius, relative to the 
reconnection scale.  Numerical two-fluid models intended for a wide variety of applications 
need to be able to reproduce the important transitions over quantitatively correct ranges in the 
parameter space.  Analytical dispersion relations derived in slab geometry with hyperbolic-
function equilibria are particularly convenient for verifying numerical computations, because 
there is a simple closed-form relation for computing ′ Δ .  In the following, we compare 
results from the NIMROD code using its implicit leapfrog advance for the two-fluid model 
[19] with two analytical scalings over parameter space. 
 
The computations described here have large guide-field (25-50 times larger than the 
reconnecting field) and satisfy the tearing condition of ′ Δ δ << 1, where δ is the generalized 

skin depth de
2 + η μ0γ , with de, η, and γ being the electron skin depth, electrical resistivity, 

and growth-rate, respectively.  The first set of computations varies ρs = βdi  by varying β, 
the square of the ratio of ion acoustic and Alfvén speeds, while maintaining fixed ion skin 
depth di.   
 
Numerical results shown in FIG. 7a extend from the MHD limit of ρs << δ , through the 
KAW-response range, and into the large- ρs  regime, where diffusion limits two-fluid effects 
[18].  Over the two-fluid regimes, quantitative values from computations converged with 
more than 100 biquartic finite elements over the direction of inhomogeneity and concentrated 
near the reconnection layer agree with analytical results evaluated from Ref. [18] to 
approximately 7%.  The discrepancy is attributable to practical difficulties in satisfying all 
orderings assumed for the analytics.  The computations need to include the reconnection 

~
1

A
B C D

MAX idβψ ν η
β

⎡ ⎤
⎢ ⎥+⎣ ⎦
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scale, which can be an order of magnitude smaller than δ, the sound gyroradius scale, the 
equilibrium scale (L), and a larger global scale to match analytical solutions where the domain 
is not bounded.  Through numerical experimentation, we find that the computational 
boundaries need to be at least a factor of six beyond the equilibrium scale for growth rates to 
be independent of wall location.  The parameters used for FIG. 7a have δ /L ≅ 8%, which is 
marginal for achieving asymptotic reconnection but practical for the parameter scan with the 
computational domain extending three orders of magnitude beyond the reconnection scale.  
Better quantitative comparison with the asymptotic analysis is achieved as resistivity, 
henceδ /L, is reduced.  The discrepancy in the resistive-MHD limit of FIG. 7a arises from 
the analytical derivation, which assumes a two-fluid response. 
 
We have recently derived another form of the dispersion relation that assumes a minimal level 
of plasma pressure, S-2/5 << β ≤1 where S is the Lundquist number, and is valid for both 
MHD and two-fluid responses [20].  The only small parameter in the derivation isεη ≡1/S.  
In these conditions, the dispersion relation is independent of the value of β, and the 
importance of two-fluid effects is controlled by di alone.  FIG 7b compares the second set of 
numerical results with the dispersion relation for these conditions.  The transition from 
resistive-MHD to two-fluid tearing is quantitatively verified, and we surmise that the 
quantitative agreement is facilitated by the fact that the analysis requires fewer orderings to be 
satisfied. 
 

  
FIG. 7.  Comparison of numerical tearing-mode growth rates at S = 7.0 ×105 from the NIMROD 
code with a) asymptotic analysis in Ref. [18] for conditions with ′ Δ /k = 0.30, k L = 0.93, and 
k di = 2.3  and b) the analysis in Ref. [20] for β >> S-2/5  and 0ed = with ′ Δ /k =1.45 , 

k L = 0.76 , and β = 0.083.  Here, τ A ≡ μ0ρ kBy∞ , where k is the wavenumber in the periodic 

direction, and By∞  is the magnitude of the reconnecting field; S ≡ μ0 η k2τ A . 
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