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Abstract. The electromagnetic torque on the toroidal plasma is calculated analytically. The derivations basically 
follow the line described in [Pustovitov V.D., Nucl. Fusion 47 (2007) 1583]. The main difference is that the 
torque is calculated now with account of the resistive wall rotation. The model assumes a thin stationary rotating 
wall and adopts the cylindrical geometry. The obtained formulas are used for analysis of the error field shielding 
by a liquid metal wall in tokamaks predicted in a similar model [Zheng L.-J., Kotschenreuther M., Nucl. Fusion 
46 (2006) L9] with a conclusion there that a flowing liquid metal wall can prevent resonance amplification of 
the error field by the plasma near its no-wall stability limit. Our theory does not support this concept. Instead, it 
gives the expressions for the torque without singularities near the no-wall stability limit, with or without the wall 
rotation. The reason of the differences is explained, the consequences are discussed and the new predictions are 
compared with available experimental data. Also the experiments are proposed to model the addressed issues on 
the existing tokamaks with conventional non-rotating walls.  
 
1. Introduction 
 
The magnetic error field may strongly affect the plasma stability in tokamaks [1]. In the past 
decade, its important role in destabilizing the resistive wall modes (RWMs) have been 
discovered and extensively studied in DIII-D experiments [2–6]. It was found that small static 
asymmetries in the magnetic field can resonantly excite stable RWMs as the plasma 
approaches marginal stability, leading to enhanced drag on the rotating plasma [2–6]. This 
resonant response was called ‘error field amplification’ or resonant field amplification (RFA). 
The discovery of RFA made a breakthrough in the RWM stabilisation. With compensation of 
the residual non-axisymmetric fields, the duration of the high-pressure discharge was 
extended to hundreds of times the wall skin time.  
 
In the RWM stability discussions, reduction of the error field level is always mentioned as the 
crucial precondition [1–8]. The experiments in JET [7] as well as DIII-D have indicated that 

1/2/ =nm  error fields must be kept below 4
1/2 1021/ −×−=tBB  in order to avoid strong 

braking of the rotation when beta is above the no-wall limit [6]. This makes elimination of 
the error field a difficult task, especially for larger tokamaks (ITER, in particular) where 
stronger restrictions may apply [1, 6]. Under the circumstances, any idea to ease the 
requirements on the error field tolerance should be considered with particular attention.  
 
Recently a theory appeared [9, 10] with an extremely promising conclusion that the 
resonance amplification of the error field in tokamaks can be prevented. The effect was 
attributed to the metal wall rotating in the poloidal direction and was called shielding of the 
error field by a liquid metal wall [9, 10]. The conclusion arose from the analysis and 
comparison of the new expressions [9–11] for the error-field induced torque on the plasma, 
with and without the wall rotation. It was announced, first, for the case of conventional 
nonrotating wall, that the static-error-field induced torque has a strong maximum at the no-
wall stability limit [9–11]. Second, that the wall rotation eliminates the maximum, which can 
even be transformed to a minimum, providing thereby dramatic reduction of the error field 
effects [9, 10]. 
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In both cases the analysis was essentially based on the interpretation of the formulas for the 
torque expressed through some ∞Wδ  and bWδ . At the beginning, these quantities were just 
described as “the energy integrals without a wall and with a perfectly conducting and non-
rotating wall” [9], without strict definitions. Later the authors explained that “Their 
definitions are the same as those introduced in Ref. [1] in the cylinder limit,” which is the 
comment to Equation (10) in Ref. [11]. The mentioned “Ref. [1]” is the well-known textbook 
[12] by Freidberg, where ∞Wδ  and bWδ  are given by equations (9.78) and (9.79). For our 
discussion here the most important is that these equations give real ∞Wδ  and bWδ . Then the 
torque found in [9–11] for the conventional wall, instead of being some varying function of 
the plasma parameters, is identically zero, see equations (20) and (22) in [11], equation (21) 
in [9], and equations (4) and (6) in [10].  
 
The latter problems have already been discussed in [13]. In [13], the electromagnetic torque 
on the toroidal plasma was derived in other physical variables. This was done for the 
“conventional” case with a nonrotating wall, and the result was compared with that of [9–11]. 
It was shown, in particular, that the conclusions on the torque strong peaking at the no-wall 
stability limit [9–11] were unjustified because of the wrong identification of ∞Wδ  and bWδ  
introduced there as just symbols replacing other unknowns. This must certainly affect the 
conclusions [9, 10] for the other case, with a liquid wall. To clarify the latter issue, here we 
perform a study similar to [13], but now assume that the wall may rotate. 
 
2. The model and definitions 
 
We consider the problem using the model and results described earlier for the standard case 
with a nonrotating wall [13]. Briefly, we assume a cylindrical model with plasma of radius 

plr  surrounded by the symmetric resistive wall at wrr = , treated as a magnetically thin shell 

wS . The approach is based on the Maxwell equations 

t∂
∂−= BErot ,   0div =B ,   jB 0rot µ= ,    (1) 

and Ohm’s law for the wall, which is, for the case of interest, 
)( BVEj ×+= σ .      (2) 

Here E  and B  are the electric and magnetic fields, respectively, 7
0 104 −⋅= πµ  H/m is the 

vacuum permeability, j  is the current density in the rotating wall, σ  is its conductivity (in 
vacuum 0=σ ), and V  is the wall rotation velocity, which is the only new element here 
compared to the analysis with 0=V  in [13]. We will apply these equations to the region 
outside the plasma with natural boundary conditions at the interfaces and at the infinity. The 
plasma enters the problem through the boundary conditions at the plasma surface plS . 
 
The magnetic field can be described as 

bBB += 0 ,      (3) 
where 0B  is the equilibrium magnetic field and b  the perturbation. Equations (1)–(2) then 
yield  

σµ0

2)rot( bbVb ∇=×−
∂
∂

t
.     (4) 

This equation has been used to study the wall rotation effect on RWM, see [14] and 
references therein. Here we consider the uniform wall rotation in both the poloidal and 
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toroidal directions and const=σ . In [9, 10], for simplicity, the liquid metal velocity was 
assumed to be purely in the poloidal direction. Also, t∂∂ /b  was disregarded there, while here 
it will play a role. 
 
We have to calculate the toroidal electromagnetic torque exerted on the plasma, which is 

( )dVRT ∫ ×⋅≡ Bjeζ ,      (5) 

where R  is the radial coordinate, ζe  is the unit vector along ζ∇  with ζ  the toroidal angle, 
and integration is performed over the plasma, but can be extended to larger volume because a 
vacuum region with 0=j  does not contribute to T . With Bj rot0 =µ  this can be reduced to 
the integral over the axisymmetric surface asS  in the vacuum: 

∫∫ ⋅=⋅=
asas SS

dRbdRBT SbSB ζζ µµ 00

11 .    (6) 

This is a general result with ϕ∇=b  in the vacuum. Dependence of T on the plasma and wall 
properties comes when the equation 02 =∇ ϕ  is solved with proper boundary conditions at 

plS  and wS . In our case the conditions at the wall are specified by equation (4). 
 
3. Mode equation in the cylindrical approximation  
 
In the cylindrical model with 

zzVV eeV += θθ      (7) 
and 0div =V  equation (4) gives for the radial component of b  in the wall: 

σµ0

2 beV ∇⋅=∇⋅+
∂
∂

rr
r b
t
b .     (8) 

Here we use the cylindrical coordinates ζθ 0,, Rzr =  (ζ  stays for the toroidal angle, and 

02 Rπ  for the length of the system). 
 
In terms of harmonics )exp(),( ζθ inimtrbb mnr −=∑  equation (8) is reduced, in the thin 
wall approximation, to 

( ) wall
mnmmnmnw BBitB 0/ Γ=⋅+∂∂ Vkτ .    (9) 

Here )( wmnmn rbB = , wr  is the minor radius of the wall, wall
mnB  is the part of mnB  produced by 

the currents in the wall, drww σµτ 0=  is the ‘wall time’ with d  being the thickness of the 
wall, 0

mΓ  is a constant approximated for the low- m  modes by Mm 20 −≈Γ  with mM = , and 
)( ζθ nm −∇≡k . Finally, equation (9) can be cast in the compact form 

ext
mnmmnm

mn
w BBG

t
B 0Γ−=
∂

∂τ ,     (10) 

where 
( )Dswwmm iniG Ω+=⋅−Γ≡ 0γττVk     (11) 

and  
nDs /0 Vk ⋅−Ω≡Ω .      (12) 

 
Here the plasma response to the external perturbation is described by the ratio 

0// mmmn
out
mn ΒΒ ΓΓ=  with ( )00 Ω+=Γ inwm γτ  a complex quantity (with real 0γ  and 0Ω ) 
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depending on the equilibrium plasma parameters. Here pl
mnmn

out
mn BBΒ −=  is the part of mnB  

due to the currents outside the plasma, which includes the contributions from the wall and all 
the currents behind the wall: ext

mn
wall
mn

out
mn ΒΒΒ += . Accordingly, pl

mnB  is the contribution from 
the plasma. The error field is a part of ext

mnB , and the other part can be due to the currents in 
the active correction coils. Here we assume no currents in the plasma-wall vacuum gap.  
 
The model with 0=V  and its applications for the linear plasma response are described in 
[15–17]. The linear perturbation theory, the same geometry and the thin wall approximation 
was also used in [9–11]. Therefore, our approach is quite adequate, though the derivations 
here and in [9–11] are essentially different.  
 
The plasma affects the mode equation (10) through mΓ , the part of mG  in (11), which is 
directly related to mnmn bbr /′  at the outer side of the plasma surface plS . Precisely, this follows 
from 

)1(2
2)1( 2

2

M
m

M
m

mn

mn

xM
xMM

b
br

−Γ+
Γ−+−=

′
    (13) 

for the plasma-wall vacuum gap, where the prime means the radial derivative, and wrrx /= . 
If there is no surface current at plS , which should be the case for slow motions of real 
plasma, the quantity on the left hand side of (13) must be the same at the both sides of plS . 
This couples the constant mΓ  to the inner solution for b . For more detail see [15–17].  
 
Thus, within the model, the perturbation amplitude mnB  is described by (10) where the wall 
rotation enters through the coefficient mG  only, while 0γ  and 0Ω  are the unknown 
characteristics of the plasma. We need (10) to relate mnB  to the error field amplitude when 

0≠V , which is a step to calculating the error-field induced electromagnetic torque on the 
plasma. In further estimates we assume mΓ  independent of V , mnB  and ext

mnB , which is a 
natural requirement in the linear plasma response model with mnmn bbr /′  inside the plasma 
determined by the plasma parameters only.  
 
4. The electromagnetic torque  
 
In the cylindrical approximation, expression (6) is reduced to [13] 

∑
>≥

=
0,0 nm
mnTT       (14) 

with 

0

* ..4
µ

ccBBV
M
niT

out
mnmn

wmn
−−= ,    (15) 

where 2
0

22 ww rRV π=  is the volume enclosed by the toroidal wall, both the star and ..cc  
denote the complex conjugate. These formulas were derived in [13] without restrictions on 
the time dependence and nature of the magnetic perturbation produced by the currents that 
flow outside the plasma. Therefore we can apply them for the tokamak with a rotating wall. 
 
With 0// mmmn

out
mn ΒΒ ΓΓ=  and ( )00 Ω+=Γ inwm γτ  equation (15) will give us 
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)(
8 2

0
22

0

0

0

2

0

Ω+
Ω

Γ=
n

nB
V

M
nT

w

out
mn

mwmn γτµ
    (16) 

or, in terms of mnB , 

0
0

0

2

8
m

wmn
wmn

nB
V

M
nT

Γ
Ω= τ

µ
.     (17) 

Here the wall rotation affects the amplitudes out
mnB  and mnB , while other quantities do not 

depend on the wall rotation velocity V . 
 
In [9–11] the torque was calculated for the stationary state with 0/ =∂∂ tBmn . Then for the 
nonrotating wall we have 0=wall

mΒ , and (16) becomes the torque due to the static error field 
with out

mnB  representing the amplitude of this field. However, with a rotating wall, the steady 
state values out

mnB  and mnB  contain a contribution from the wall, 0≠wall
mΒ  given by (9). In this 

case equation (10) yields, when 0/ =∂∂ tBmn , 

mm
ext
mnmn GBB // 0Γ= ,     (18) 

and the torque expression (17) is reduced to 

)(
8 222

0

0

0

2

0

Dsw

ext
mn

mwmn n
nB

V
M
nT

Ω+
ΩΓ=

γτµ
,    (19) 

where DsΩ  is defined by (12). The final formula gives us the torque due to the static error 
field, calculated for the state with 0/ =∂∂ tBmn . This is the same quantity that was discussed 
in [9] and [10], though expressed in other physical variables. The latter circumstance greatly 
facilitates interpretation of the result since all the symbols here are defined and have clear 
meaning.  
 
5. Discussion 
 
The wall rotation affects the torque (19) through DsΩ  only. For fixed ext

mnB , 0γ  and 0Ω , 
which means comparison at similar conditions with only V  varying, the ratio of the torques 
(19) with and without the wall rotation is 

2
0

2
0

2
0

22
0

)( Vk ⋅−Ω+
Ω+=

n
n

without
with

γ
γ .    (20) 

To make this ratio small, one needs the wall rotation much faster than the natural rotation of 
the mode at 0=V , 0Ω>>⋅ nVk , and in addition 0γ>>⋅ Vk . These conditions could not 
be obtained in [9, 10] where the torque was expressed through some ∞Wδ  and bWδ  without 
their physical or mathematical identification. 
 
Though equations (19) and (20) allow the torque reduction due to the proper rotation of the 
wall, they do not support the main conclusion of [9] that the flowing liquid metal wall can 
prevent resonance amplification of the error field by the plasma near its no-wall stability 
limit. First, there is no resonance in (19) near the no-wall limit, since the latter must 
correspond to some negative 0γ  here, if we consider typical rotationally stabilized discharges 
in DIII-D [2–6] with the stability boundary ( 00 =γ ) essentially above the no-wall limit. 
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Meanwhile, the “no-wall resonance” in [9–11] was attributed to vanishing denominator in the 
expression similar to (19) (which could be equivalent to formal 0→Γm ). In more detail this 
was discussed earlier in [13]. Second, the ratio (20) shows that the wall rotation can work in 
both ways, decreasing or increasing the torque, which was not noticed in [9, 10]. 
 
It follows from (20) that, contrary to the dramatic reduction declared in [9, 10], the wall 
rotation can also provide an increase of the torque when 

2
0

22
0 )( Ω<⋅−Ω nn Vk .     (21) 

This increase can be quite large with 0Ω=⋅ nVk  at 2
0

2
0

2 γ>>Ωn . Mathematically, this has the 
same origin as the peak discovered for 0=V  in [9–11] and discussed in [13]: it comes from 
asymptotic behavior of (19) like x/1  at 0→x . However, within the model, any singularity 
must be treated with care. Unlimited increase of the torque (19) simply indicates that the 
steady-state assumption 0/ =∂∂ tBmn  is not longer valid. 
 
Discussion of (20) will be incomplete without this reminder: equation (19) was obtained for a 
steady state with 0/ =∂∂ tBmn . The preceding equation (17), valid for arbitrary )(tBmn , shows 
that the torque peaking, which is a fundamental result of the new theory [9–11], is only 

possible with a strong growth of 
2

0 mnBΩ . The statement that “the reduced rotation further 
enhances the strength of the braking torque” [9], where the “reduced rotation” implies smaller 

0Ω , would then require, for the peaking discovered in [9–11], a singular-like growth of 
2

mnB  at some intermediate β  below the RWM stability limit RWMβ  when 0=V . And 
“shielding of the error field by a liquid metal wall” [9] means complete elimination of this 
peak at finite V . 
 
However, the experiments on DIII-D, including [2] and [3] mentioned in [9–11] and other [4–
6] with more information on the RFA effect, have never shown the peaking of mnB  at some 

RWMββ < , when plasma is stable, with subsequent theoretically predicted [9–11] drop of 

mnB  at larger β . The same is true for RFA experiments in JET [7] and NSTX [8]. In other 

words, when β  crosses the no-wall limit wallno−β , 
2

0 mnBΩ  remains a regular quantity, 

without sharp peaking at wallno−= ββ  and strong reduction behind this point. 
 
6. Experimental application and testing 
 
The DIII-D is a tokamak with a conventional wall, but some results from DIII-D can be a 
perfect illustration of the effects related to the liquid rotating wall. 
 
To extend the narrow limits of the original problem, we should wonder what physics is 
involved here. In the combination “rotating wall + static error field” the essential element is 
the relative motion of the metal wall and the magnetic field. But this can also be realized if 
we apply a rotating magnetic field while keeping the metal in natural rest. 
 
Assume that the correction coils produce the rotating ),( nm  perturbation with 

)exp( τδ m
os
mn

ext
mn PbB = ,     (22) 
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where wt ττ /≡ , wm inP ωτ= , and ω  is the toroidal rotation frequency of the applied field. If 
such a field is switched on at 0=t , equation (10) with constant mG  gives for 0>t : 

mm

mmos
mnmmmnmn PG

PGbGBB
−
−Γ−= )exp()exp()exp( 00 τττδ ,   (23) 

where mnBδ  is the time-varying part of mnB , and 0
mnB  is the integration constant. For a stable 

plasma with 00 <γ , after a transient phase ( 10 >>tγ ) this will evolve to 

)exp( tinbAB os
mnosmn ωδ = ,    (24) 

where osA  describes the ‘amplification’ of the oscillating external perturbation ext
mBδ : 

wm

m
os inG

A
ωτ−

Γ=
0

.     (25) 

Then in the steady state described by (24), we have from (17) 

])/([
8 2

0
22

0

0

0

2

0

ωγτµ −⋅−Ω+
ΩΓ=

nn
nb

V
M
nT

w

os
mn

mwmn Vk
.   (26) 

 
This expression incorporates both the wall rotation and the rotation of the applied magnetic 
perturbation. It shows that they produce exactly the same effects, which allows to use the 
available experimental data for analysis of the anticipated RFA with the wall rotation. 
 
The amplification of the resonant rotating perturbation was studied on the tokamaks DIII-D 
[4, 5] and NSTX [8]. The linear plasma response to the applied perturbation and the transition 
to (24) were observed, and the amplitude and phase of mnBδ  have been measured. The 
experimental results in Figure 10 in [4], Figure 6 in [5] and Figure 2 in [8] demonstrate a 
typical resonant curve that corresponds to [16] 

2
0

22
0

0

)( ωγτ −Ω+

Γ
=

n
A

w

m
os ,     (27) 

which is a consequence of (25) at 0=V . Equations (25) and (26) show that the same 
dependence must be expected from the wall rotation. The singular-like peak described in [9–
11] and similar infinite RFA predicted earlier [18] are, mathematically, reproduced in (27) as 
an asymptotic at 0Ω=ω  and 00 →γ . With such 0γ , however, we step much behind the 
applicability limits of (24) and (27). Instead we should use the solutions (17) and (23). 
 
7. Conclusions 
 
The conclusion [10] that “the presence of a liquid metal wall causes a dramatic difference” by 
producing the “shielding of the error field” [9, 10] is not confirmed by our analysis. There is 
a difference, but not such dramatic as elimination of the resonances, strongly emphasized in 
[9, 10]. Within the model, there is a natural Doppler shift effect which may either decrease or 
increase the RFA, depending on the wall rotation velocity V . However, for a plasma stable 
against the RWMs the model does not allow severe peaking of the torque such as shown in 
Fig. 1 in [9] and Figs. 1 and 2 in [10], even if the most pessimistic estimate (19) will be used. 
With or without the wall rotation, for stable or unstable plasmas, the electromagnetic torque 

on the plasma is proportional to 
2

0 mnBΩ , as described by (17). In the RFA experiments [2–
8] this quantity behaves regularly, without singularities. This also points against [9, 10]. 
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The derived equations show that the rotating wall effect on RFA can be modeled and 
experimentally studied in the existing tokamaks with a conventional solid nonrotating wall. 
This can be done by applying the rotating perturbations using the technique developed on the 
tokamaks DIII-D [4, 5] and NSTX [8]. Actually, the information already obtained in the RFA 
experiments [4, 5, 8] can be used for testing the results and conclusions presented here and in 
[13]. Qualitative agreement seems evident, and, if necessary, more detailed description can be 
done by using the full toroidal equations [17] for RFA.  
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