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Abstract. The appearance of transport barriers in plasmas is usually taken to be the result of bifurcations in the 
transport equations, in which the possible control parameters is the radial electric field, in association with shear 
flow, which may contribute to the reduction or suppression of turbulent fluctuations. Yet, most calculations start 
from the assumption of magnetohydrodynamic (MHD) equilibira calculated form the Grad-Shafranov equation,, 
in which no flows are taken into account. The purpose of this work is to study the effect of toroidal and poloidal 
flows in the quantities related to the build up of internal transport barriers. The force balance equation, gives rise 
to a modified Grad-Shafranov equation, which must be solved along with a Bernoulli equation. In order to 
understand the role of the input power, it is useful to understand the behaviour of the MHD conserved quantities 
as well, which are related to the topology of the fields. The electrostatic field potential remains a surface 
quantity, so far as resistivity is ignored. It is found that, while most of the equilibrium quantities show small 
variations, the most important changes are observed in the electric field.   
 
 
1. Introduction 
 
Transitions between L-modes and H-modes, as well as the appearance of internal transport 
barriers (ITB) are complex phenomena which require a deep understanding of the relevant 
transport processes. They may be interpreted as bifurcations in the transport equations, as the 
result of radial electric fields associated to shear flows, which may contribute to the reduction 
or suppression of turbulent fluctuations [1]. However, it is worth exploring up to what extent 
an appropriate description can be achieved from the point of view of magnetohydrodynamics 
(MHD). Most calculations start from magnetohydrodynamic (MHD) equilibira calculated 
form the Grad-Shafranov equation, in which no flows are taken into account. The derivation 
of the modified equilibrium equations, and the identification of the relevant surface quantities 
when flows are taken into account, was made by Hameiri [2]. Almaguer et al. [3] showed that 
such equations could be obtained from a variational principle, when a Lyapunov functional is 
constructed from the relevant MHD conserved quantities, allowing the study of Lyapunov 
stability. More recently, other authors have studied the problem, providing analytic solutions 
for incompressible plasmas, both in cylindrical and toroidal geometries [4-6]. 
 
The purpose of this work is to study the effect of toroidal and poloidal flows in the quantities 
related to the build up of internal transport barriers. In this case, the force balance equation, 
gives rise to a modified Grad-Shafranov equation, which must be solved along with a 
Bernoulli equation. Pressure is no longer a surface quantity, but additional surface quantities 
arise, as well as new MHD conserved quantities, which are related to the topology of the 
fields.  The electrostatic field potential remains a surface quantity, so long as resistivity is 
ignored. It is found that, while most of the equilibrium quantities show small variations, the 
most important changes are observed in the electric field.  
 
On the other hand, it must be recognised that the approach described above, in the framework 
of ideal MHD with flow, does not take into account that both input power and dissipation are 
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important in real systems, and that they are what determine the nature of the bifurcation in the 
formation of transport barriers. Ball et al. [7-9], for instance, have studied the bifurcation 
problem using economical or minimal models, based on reduced MHD equations with 
phenomenological terms, which allow an optimization approach. Bifurcations are obtained by 
controlling such parameters as those related to the power source, damping and shear flow 
driving rate. Therefore, the functionals that are conserved quantities, or constrictions, in ideal 
MHD, actually evolve when input power and dissipation are considered. Since the 
bifurcations are, not just a change in the solution of a given equation, but a change in the 
nature of the equilibrium equation, and it is these functionals that determine the equation, it is 
in their evolution that bifurcations in the equilibrium are to be sought.  
 
 
2. The model equations 
 
We start from the standard ideal MHD equations [3] 
 

( )vρρ ⋅−∇=t ,     (1) 
,sst ∇⋅−= v       (2) 

( ) Bjvvv ×+∇−∇⋅−= −− 11 ρρ pt ,     (3)  
( )BvB ××∇=t ,     (4) 

 
(subscripts denote partial derivatives) with  
 
    (5) ),,(T      ),,(     ,     ,0. 2 sesep s ρρρ ρ ==×∇==⋅∇ BjB
 
where ),( and , , , , ses ρρ Bv  are the mass density, specific entropy, plasma fluid velocity, 
magnetic field, and the specific internal energy respectively. The plasma pressure p and the 
temperature T are determined as functions of ρ  and s from a prescribed equation of state 
relation for the specific internal energy ),( see ρ=  through the first law of thermodynamics: 
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Boundary conditions are chosen as 

DD ∂∂
⋅==⋅ nBnv ˆ0ˆ .    (7) 

 
Assuming axisymmetry 0/ =∂∂ ϑ  in cylindrical coordinates ),,( zr ϑ , and proposing 
functions ),,,(   ),,,( tzrtzr φφψψ ==  the magnetic and velocity fields can be represented as  
 

θψϑψ ∇+∇×∇= )(bB ,   (8) 
ξθϑφ ∇+∇+∇×∇= uv .   (9) 

 
It is well known that (1) to (4) yield the conservative equation for energy 
 

)]()/2/[()2/12/1( 2222 BvBv ⋅⋅−++⋅−∇=++∂ ρρρρ BhveBvt , (10) 
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so taking into account the boundary conditions (7), 
 

∫ ++=
D

xdeBvH 322 )2/12/1( ρρ    (11) 

 
is a conserved quantity. It has furthermore been shown that the following quantities are also 
conserved: 
 

∫= D
xdFC 3

00 )(ψρ ,    (12) 

 
associated with the conservation of mass, 
 

∫ ⋅=
D

xdFC 3
11 )()( ψBv ,   (13) 

 
which represents the conservation of cross-helicity, 
 

∫ −=
D
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2

2
2 )(ψ ,    (14) 

 
related to the conservation of magnetic-helicity, and 
 

∫= D
xduFC 3

33 )(ψρ ,    (15) 

 
representing the conservation of angular momentum. are in principle 
arbitrary constants of 

3210  and , , , FFFF
ψ .  

 
The equilibrium equations can thus be found upon minimising the functional  
 

)( 3210 CCCCHH c ++++= ,    (16) 
 
yielding the following set, which generalises to the Grad-Shafranov equation: 
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This set of equations is consistent with the generalization of the Grad-Shafranov equation 
done by Hameiri Ref [2], and has been used in the past to study the Lyapunov stability of an 
axisymmetric toroidal plasma, by performing the second variation of functional (16)[3]. It is 
akin to that found independently by Siminitzis et al. [4]. The square of the Alfvén Mach 
number can be defined as .  ρψ /)(2

1
2 FM =
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It can be easily seen that in the absence of flow, (17) vanishes, while (18) and (19) yield 
),()(0 shF ρψ = , and bF =)(2 ψ . Substituting these simplifications in (20) the usual Grad-

Shafranov equation is recovered. 
 
 
3. Criticality and Bifurcations 
 
 
Once the appropriate equations for the plasma equilibrium with flow have been established, a 
strategy can be developed to understand the nature of changes in their solutions, and relate 
them to the build-up of transport barriers. In order to do so, it is important to clarify a few 
concepts, which can be illustrated in a very elementary way [10].  
 
Let us first consider the following algebraic cubic equation: 
 

0)()( 3 =−−= yyyG cλλ ,    (21) 
 
where cλ  is a constant, and λ  is a parameter which defines a family of equations. It is 
clear that upon varyingλ , it is possible to find three different sets of solutions;  
 

,     ,     ,0     ; 321 ccc yyy λλλλλλ −−=−==>   (22) 
 

,0     ,0     ,0     ; 321 ==== yyycλλ     (23) 
 

,     ,     ,0     ; 321 ccc iyiyy λλλλλλ −−=−==<   (24) 
 
so that depending on the value of λ  the cubic function  can have three real roots, a 
degenerate one, or only one. From the geometric point of view, the nature of the solutions 
changes with

)(yG

λ . From the first and second derivatives of extremal points are found for 
the first case, when they are real, which disappear for the second and third case. Therefore, 
there is a bifurcation at the critical value

)(yG

cλ , when 0)('' =yG  i.e.: a change from one 
solution branch to another. Criticality is a qualitative change in the equation properties when 
a parameter is varied, and can lead to a bifurcation which leads to new solutions or to loss of 
solutions. However, a bifurcation can only happen if different solutions exist in the first place.  
 
3.1. Criticality and bifurcations, and differential operators 
 
When we have a differential operator )(ψL , defining an equation 0)()( =+ ψψ JL , such as 
the case of Grad-Shafranov equation or its generalised system with flow, it may be possible to 
extend the criticality ideas above by writing  
 

0)()()( =+= ψψψ JLG ,    (25) 
 
and defining the Gateaux derivative in terms of the function ψ  
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Following the analogy with the elementary example presented above, a sufficient condition 
for criticality at a solution ψ  of (25), will be that in a given directionμ a nontrivial solution 
of  
 

0)( =
ψ

μLG     (27) 

 
exists somewhere in the domain of G. In that case G is critical and ψ  is a critical solution. 
 
3.2 Bifurcations of equilibrium equations and transport barriers 
 
It has been proposed by Solano [10] that transport barriers can be interpreted as bifurcations 
in the solutions of the Grad-Shafranov equation. In order to allow the existence of solutions to 
which the equation can bifurcate, it would be necessary that )(ψJ  in (25) had the right 
nonlinearity, such as , where 3)()(')( cobb ψψαψψ −= oα  is a constant and cψ  is a critical 
solution. Although this may be a reasonable approach from the mathematical point of view, it 
is necessary to take into account two things: An important driving parameter for transport 
barriers is the external power sources, which modify the current density profile, and therefore 
the safety factor shear. This might be taken into account in the form of 

)(')(')()( ψψψψ pbbJ += . However, transport barriers are associated to the existence of 
shear flow, for which the pressure p is no longer a surface quantity. Generalised equilibrium 
equations such as those derived in section 2 are likely to be more appropriate, where the flow 
is induced as a radial electric field is produced over a layer. While the work in Refs. [4-6] is 
extremely valuable, the extra bonus of identifying the relevant conserved quantities helps to 
control the parameters which induce bifurcations, such as those clearly determined in Refs. 
[7-9]; The power source which modifies the safety factor and consequently the pressure 
gradient, the flow source, which presumably is the radial electric field, induced by the power 
source, and the damping originated by the turbulence fluctuations. While the model proposed 
in section 2 is ideal, proper tuning of the conserved quantities can be used in order to 
investigate the existence of new branches of solutions, and therefore bifurcations. 
 
 
Conclusions 
 
In spite of their physical complexity, the build-up of transport barriers show the main features 
of bifurcations in simpler equations, which is encouraging to explore the possibility of finding 
them from the MHD point of view, by tuning its conserved quantities. While the Grad-
Shafranov equations is not sufficient to describe the phenomena which are observed in the 
experiments, use of a proper generalised equilibrium set of equations such as that presented in 
section 2 may be more suitable. I fact, Siminitzis et al. [4] have found solutions to their 
generalised model in terms of a parameter, such that when it is zero the Solovév equilibrium 
is recovered, and when it is greater than zero separatrix solutions, such as those found in 
spherical tokamaks can be found, and trianguarity depends on the flow. Different solutions 
are found when the flow parameter is smaller than zero. Therefore, although this is not what 
we are searching for, it is a good example of bifurcations in generalised equilibrium 
equations.  
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Two important matters remain to be studied: (a) To find solutions in which the poloidal flow 
and radial electric field can be prescribed on thinner layers, such as those found 
experimentally in H modes. (b) Although promising analytical studies can be found in the 
literature which show behaviour of solutions similar to those observed in the experiments, 
they still need to include the effects of power input and dissipation. To understand the nature 
of relaxation of to equilibrium states from the variational point of view, when dissipative 
effects are included. Experimental devices are actually not in a real equilibrium, but in a 
steady state out of equilibrium. This is essential for understanding their self-organisation 
properties. 
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