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Abstract. The multi-scale interaction among the tearing mode and the drift wave is investigated using reduced 
MHD model including the electron viscosity. It is newly found that the fluctuating bootstrap current in the 
Ohm’s law gives rise to a new instability for the regime where the tearing mode is stable. The stability depends 
on the dissipations and kinetic effects. This result implies that for some parameter regime where Δ’ is negative, 
the seed island may not be needed to drive the neoclassical tearing mode. The nonlinear simulations with multi-
helicity modes are performed for the q profile where the (2,1) tearing modes is unstable and for the optimized q 
profile where all tearing modes are stable. These results are compared with each other. 
  
1. Introduction 
 
The research on the magnetic island in high beta regime is one of important topics in tokamak 
plasmas. Once it appears, the confinement degradation occurs[1]. Therefore, it is critical to 
attain the self-ignition condition in International Thermonuclear Experimental Reactor 
(ITER). The Neoclassical Tearing Mode (NTM) is a possible candidate to drive magnetic 
island[2,3] in high beta plasmas. The Rutherford type equation is derived to analyze NTM. 

The simple form is given by 
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Lq = q /q
' , 
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Lp = "p / p
' , 
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" p  is the poloidal beta and 

! 

G1, 

! 

G2  are numerical constants[4,5]. If 

! 

"
'
< 0, then the 

saturated island width is determined by 

! 

dw

dt
= 0 . For the subcritical bifurcation of magnetic 

island, the extra term such as the transport threshold is introduced[6]. The linear stability of 
tearing mode with neoclassical effect is analytically investigated in the sheared slab 
geometry[7]. It is found that tearing mode tends to be strongly suppressed by the combined 
effects of rotation damping in the vorticity equation and the bootstrap current in Ohm’s law. 
So far, no one investigate numerically the linear stability of tearing mode with neoclassical 
effect in the limit of 

! 

"
'
< 0. This is because in this limit, the tearing mode is considered to be 

stable, so is NTM. 
In this paper, we examine the linear stability of drift tearing mode with neoclassical effect in 
the cylindrical geometry. It is found that there is an instability even in the limit of 

! 

"
'
< 0 if 

the fluctuating bootstrap current is included. This instability is stabilized by the drift effect 
and by collisional viscosities. The result implies that for some parameter regime where Δ’ is 
negative, the seed island may not be needed to drive the neoclassical tearing mode. The 
nonlinear simulations with multi-helicity modes are also performed for the q profile where the 
(2,1) tearing modes is unstable and for the optimized q profile where all tearing modes are 
stable. These results are compared with each other. 
 
2. 3-field Reduced MHD Model 
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The 3-field reduced MHD model including the neoclassical electron viscosity is derived by 
neglecting parallel ion momentum equation from the 4-field model[8]. It consists of the 
vorticity equation, Ohm’s law and the continuity equation: 
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where 

! 

d /dt = " /"t + [#,], 

! 

[,] is the Poisson bracket, 

! 

" // = ik// # [A,], 

! 

U ="#
2$ , 

! 

J = "#$
2
A . 

! 

"  is the plasma beta, 

! 

" is the inverse aspect ratio, 

! 

" # (c /$ pi ) /a is the normalized ion skin 
depth, where 

! 

c  is the speed of light, 

! 

" pi  is the ion plasma frequency and 

! 

a  is the minor 
radius. 

! 

µ is the ion viscosity, 

! 

"// and 

! 

"# are the parallel and perpendicular resistivity. The 
parameter 

! 

"  indicates the strength of the drift wave coupling. The normalization is the same 
as those given in Ref.[8,9]. In this model, the neoclassical electron flow is simplified by 
assuming the neoclassical ion flow is zero. The rotation damping is neglected in the vorticity 
equation for simplicity. It gives the minimal model to describe NTM dynamics. 
 
3. Linear Analysis 
 
In this section, the linear stability of the collisional drift tearing mode with the neoclassical 
electron viscosity is investigated. The model q profile is introduced as 
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qs " q0

2
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b
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where 

! 

a = 3, 

! 

b =1, 

! 

qs = 2. Changing the value of 

! 

q0 , the absolute value of 

! 

"
'  is 

controlled. Figure 1 shows q profiles in cases with 

! 

q0 = 0.6, 1.0, 1.4 . 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
FIG.1. q profiles in cases with q0=0.6, 1.0, 1.4.  FIG.2. Dependence of Δ’ on q0. 
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The corresponding 

! 

"
'  is shown in figure 2. Simulation parameters are given by 

! 

" =10
#2 , 

! 

" = 2 #10
$1, 

! 

µ =10"4 , 

! 

"// =10
#5, 

! 

"# =10
$4 . Figure 3 shows the time evolution of 

electromagnetic energy of (2,1) mode in cases with or without the neoclassical electron 
viscosity for 

! 

" =1.2 #10
$2  and 

! 

"
'
= #1.429 . It is shown that even 

! 

"
'
< 0, the collisional 

drift tearing mode is unstable for the case with neoclassical electron viscosity. 
 
 

 

 
 
 

 
 

 
 
FIG.3. Time evolution of electromagnetic energy       FIG.4. Dependence of growth rate on Δ’ 
     of (2,1) mode. 
 
Figure 4 shows the dependence of the growth rate on 

! 

"
'  in the case with 

! 

" =1.2 #10
$2 . It is 

found that the collisional drift tearing mode is unstable for the large negative value of 

! 

"
'  in 

this case. Next, the dependence of the growth rate on 

! 

"  is investigated. The result is shown 
in figure 5. The fitting curve proportional to 

! 

e
"29.126#  is shown by the dashed curve. 

 
 
 

 
 

 
 

 
 
 

 
 
 
 
 
 
FIG.5. Dependence of growth rate on δ.             FIG.6. q profiles for nonlinear simulations 
 
It is expected that the complete stabilization can not be attained by only the electron 
diamagnetic effect in this model. On the other hand, we have already found that the sound 
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wave stabilizes the collisional drift tearing mode with neoclassical ion and electron 
viscosity[9] in the banana regime, so that we may speculate that the existence of the stability 
threshold in 

! 

"
'
< 0 regime strongly depends on dissipations and kinetic effects. The more 

precise treatment of these effects is necessary to argue the stability boundary of the instability. 
It is left for future work.  
 
4. Nonlinear Simulation with Multi-helicity 
 
4.1. q-profile Dependence 
 
In this section, the nonlinear simulations with multi-helicity modes are performed for two 
different q profiles. Figure 6 shows q profiles used in the nonlinear simulations. The red curve 
indicates the standard q profile which is unstable for the (2,1) tearing mode, i.e., 

! 

"2/1
'

=11.1 
and the blue curve indicates the optimized q profile which is stable for all tearing modes, 

! 

"2/1
'

= #0.244 . Simulation parameters are the same as those used in the linear analysis except 

! 

" =1.2 #10
$2 . Figure 7 and 8 show time evolution of electromagnetic energy of each Fourier 

mode in cases with the standard q profile and the optimized q profile. 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
FIG.7. Time evolution of electromagnetic        FIG.8. Time evolution of electromagnetic  
energy for standard q profile.                  energy for optimized q profile. 
 
For the standard q profile, the (3,1) collisional drift tearing mode with neoclassical electron 
viscosity linearly grows at 

! 

t "1000, then it is nonlinearly accelerated due to the three wave 
coupling of high m modes at 

! 

1000 " t " 2000 . The nonlinear acceleration mechanism is 
explained based on the kick of turbulent noise[10]. It enters the Rutherford regime and then 
saturates at 

! 

t " 2200 . The (2,1) mode appears later time since the linear growth rate is 
smaller than that of (3,1) mode, then it is nonlinearly accelerated at 

! 

t " 2000 . It saturates at 

! 

t " 3500. In the later saturation phase, at 

! 

4000 " t " 8000, the (2,1) mode interacts with (3,1) 
mode. The (0,0) mode dominates the system in the saturation phase. For the optimized q 
profile, the (6,3) mode is linearly unstable in the initial phase, however, in the saturation 
phase, the tendency of mode behavior is similar to the standard q profile, so that we discuss 
the results in the optimized q profile in the following subsection. 
 
4.2. Nonlinear Dynamics  
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In this subsection, we examine the behavior of each mode in the saturation phase. Figure 9 
and 10 show the contour plot of 

! 

A(r,",z = 0)  at 

! 

t = 8000 and 

! 

t =10000, respectively. At 

! 

t = 8000, the (2,1) mode strongly interact with (3,1) mode and at 

! 

t =10000, the (2,1) mode is 
dominant as is seen in Fig.8. This is also observed in the contour plot of 

! 

A(r,",z = 0) , where 
the structure changes in each time. 
 

 
 
FIG. 9. Contour plot of 

! 

A(r,",z = 0)           FIG.10. Contour plot of 

! 

A(r,",z = 0)   
at 

! 

t = 8000.                              at 

! 

t =10000. 
 
Next, we evaluate the particle flux 

! 

"(r) = nv
E#B , where the bracket indicates the average in 

the poloidal and toroidal direction. Figure 11 shows the radial profile of the particle flux in 
the saturation phase. At 

! 

t = 8000, the negative peak appears around 

! 

r = 0.5, on the other 
hand, at 

! 

t =10000, the positive peak appears in the same region. The nonlinear interaction 
between (2,1) and (3,1) modes generate the negative flux in this region. 
 
 
 
 
 

 

 
 

 
 
 
 
 
FIG.11 Radial profile of particle flux.          FIG.12 Dependence of growth rate on 

! 
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Unfortunately, only 343 Fourier modes are taken into account in this simulation so that it is 
difficult to argue the transport driven by the interaction between tearing mode and high m 
turbulence. It is left as a future work. 
 
5. 4-field Reduced MHD Model 
 
In the section 3, we do not find the stability threshold of the collisional drift tearing mode 
described by the three-field model, so that we extend the model in this section. The 4-field 
model is derived by assuming cold ion and neglecting parallel ion momentum: 
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In this extension, we include the neoclassical electron viscosities in the continuity equation 
which are neglected in the 3-field model. In addition, we include the electron temperature 
evolution equation where 

! 

"
T

= 0.71  and 

! 

"# =10
$4 . Using the optimized q profile 

introduced in the section 4, we investigate the stability threshold of the collisional drift tearing 
mode. Figure 12 shows the dependence of growth rate on 

! 

" . It is found that the stability 
threshold strongly depends on 

! 

"# and 

! 

"#. If we set 

! 

"# = $# = 0, no stability threshold is 
found and higher harmonics are more unstable than (2,1) mode. In addition, the neoclassical 
electron viscosities in the continuity equation are also important. Without them, the stability 
threshold disappears even if 

! 

"# and 

! 

"# are finite. 
 
6. Nonlinear Simulation with Single-helicity 
 
In this section, the nonlinear simulation with single-helicity is performed using 4-field model. 
Adapting eigen-functions obtained by the simulation with standard q profile as initial values, 
we restart the run with the optimized q profile and observe the dynamics of NTM. Figures 13 
shows the time evolution of electromagnetic energy of (2,1) mode in case with 

! 

" =10
#2, 

where mode is linearly stable as is shown in Fig.12. It is found that the nonlinear sustainment 
does not occur but the magnetic island simply dumps out in this case. This result is different 
from that given by a simple Rutherford model, where the magnetic island will grow if 

! 

"
'
< 0 

and the seed island is given initially. In our model, the dissipations play important role to 
determine the stability threshold of the collisional drift tearing mode in 

! 

"
'
< 0 regime. 

Therefore, it is difficult to argue the sub-critical excitation of NTM based on our model at this 
point. Instead, we should clarify the mechanism of island saturation (the simple balance 
between 

! 

"
'  and the fluctuating bootstrap current term does not explain simulation results, 

since the quasi-linear effect is more prominent). It is left as a future work. 
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FIG.13. Time evolution of electromagnetic energy. 
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