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Abstract. The energy loss due to an edge localized mode (ELM) crash and its cycle have been studied by using 

an integrated transport code with a stability code for peeling-ballooning modes and a transport model of 

scrape-off-layer (SOL) and divertor plasmas. The integrated code reproduces a series of ELMs with the 

following characteristics. The ELM energy loss increases with decreasing the collisionality and the ELM 

frequency increases linearly with the input power, as the same as experiments of type-I ELMs. A transport model 

with the pedestal neoclassical transport connected to the SOL parallel transport reproduces the inter-ELM 

transport, which decreases in the low collisionality so that the ELM loss power is enhanced as observed in 

experiments. The inter-ELM energy confinement time agrees with the scaling based on the JT-60U data. The 

steep pressure gradient inside the pedestal top, required for improved H-mode plasmas with the HH98y2 factor 

above unity, is found to enhance the ELM energy loss and reduce the ELM frequency so that the ELM loss 

power remains constant. The steep pressure gradient inside the pedestal top broadens the region of the ELM 

enhanced transport and induces subsequent instabilities. When the large energy is transported near to the 

separatrix by the instabilities, a subsequent instability arises near the separatrix and makes an additional loss. 

 

1. Introduction 

 

Edge localized modes (ELMs) induce sometimes very large heat load to divertor plates and 
cause the reduction of plate lifetime. The ELMs, however, are expected to sustain a H-mode 

plasma without the accumulation of impurities. The ELM cycle consists of two phases: an 

ELM crash by the MHD instability inducing the energy loss from the pedestal plasma and a 

quiescent phase recovering the pedestal energy between ELMs (inter-ELM phase). Analyses 
from multi-machine experiments showed that the ELM energy loss increases with decreasing 
the collisionality [1-3] and the inter-ELM transport increases with the collisionality [3,4]. 
Effects of the bootstrap current and the scrape-off-layer (SOL) transport on the ELM energy 
loss, and an effect of the neoclassical transport on the inter-ELM transport have been 
discussed in [1,2] and [4], respectively. The physical understanding and quantitative 
evaluation are, however, not fully accomplished so far. 
 
The integrated simulation code is one of effective methods to study the ELM mechanism 
[5-9]. For example, an integrated code COCONUT, which integrates 1.5 dimensional (1.5D) 
core transport code JETTO and 2D divertor code EDGE2D, has been developed and is being 
used for the study of ELM dynamics [8]. On the other hand, we have developed an integrated 
code TOPICS-IB [9] with a dynamic five-point model for SOL-divertor plasmas [10] and a 
stability code for peeling-ballooning modes, MARG2D [11]. The TOPICS-IB is based on a 
1.5D core transport code TOPICS extended to the integrated simulation for burning plasmas. 
The TOPICS-IB clarified the physical mechanism of the ELM energy loss, such as the 
collisionality dependence of the energy loss caused by the edge bootstrap current and the SOL 
transport [9,12,13]. In the previous study, however, only one ELM crash was examined. The 
ELM cycle following the first ELM has not yet been investigated. 
 

In this paper, we study the ELM energy loss and cycle by using the TOPICS-IB. We examine 
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the relation between the ELM cycle and the energy loss influenced not only by the 
collisionality and but also by the steep pressure gradient inside the pedestal, which is required 
for improved H-mode plasmas with the HH98y2 factor above unity. The input-power 
dependence and the inter-ELM transport are investigated and compared with experiments. 
 

2. Integrated code TOPICS-IB for the ELM dynamics 

 

The ELM dynamics is investigated by the TOPICS-IB, in which the TOPICS is coupled with 
the ELM model [9], the SOL-divertor model [10] and neutral models [13]. Details of the 
TOPICS-IB are shown in [9,13]. Some essential features are explained as follows. 
 

2.1. 1.5D transport code TOPICS 

 

TOPICS self-consistently solves the 1D transport and current diffusion equations and the 
Grad-Shafranov equation of the MHD equilibrium on the 2D plane. The transport equations 
are the continuity equation for the deuterium ion density, ni, the power balance equations for 
the electron temperature, Te, and the ion temperature, Ti, on the coordinate of the normalized 
minor radius, . In this paper, particle and thermal diffusivities are assumed as D = Dneo,i + 
Dano and e,i = neo,i + ano,e,i, where Dneo,i and neo,i denote neoclassical ion diffusivities. The 
anomalous diffusivities Dano and ano,e,i are simply given as an empirical formula based on 
JT-60U experiments, Dano = ano,e = 0.18 (1+2 3) (1+PNB

0.5) m2/s and ano,i = 2 ano,e, where PNB 
is the neutral beam power in the unit of MW. In order to produce the H-mode pedestal 
structure, the transport near the edge is reduced to the neoclassical level (Dano = ano,e,i = 0). 
This pedestal transport model is supported by the experimental observation that the electron 

heat diffusivity between ELMs was reduced to the ion neoclassical level [4]. The pedestal 
width, ped, is prescribed for simplicity. The neutral transport in the core region is solved by 
the 2D Monte-Carlo method. The particle flux of neutrals across the separatrix derived from 
the particle balance model in subsection 2.4 is used as an input for the Monte-Carlo code. 
 

2.2. ELM model 

 

The ELM model [9] has been developed by coupling the TOPICS with a linear MHD stability 
code MARG2D [11]. In the present simulation, stabilities of n = 1-50 modes are examined at 
given time-intervals, where n is the toroidal mode number. When some modes become 
unstable, an ELM is assumed to occur. The ELM enhanced diffusivities, DELM and ELM, are 
added on the basis of eigenfunction profiles of unstable modes, where DELM = ELM = ELM

max  
( n r,n

2)/N, where ELM
max is the maximum value, r,n denote the radial displacement of the 

plasma by the unstable mode with specific n, and N is the total number of the unstable modes 
with various n. The profile of the radial displacement r,n is assumed to be the sum of poloidal 
mode components of the eigenfunction, r,n,m, i.e., r,n  m r,n,m, where r,n is normalized by its 
maximum value. The ELM enhanced transport is maintained for a time interval ELM given as 
a parameter. 
 

2.3. SOL-divertor model 

 

The five-point model [10] is based on the integral of time-dependent fluid equations, i.e., 
particle, momentum, electron and ion temperatures, generalized Ohm's law and current 
equations. The model geometry is an open magnetic flux-tube nearest to the separatrix. The 
flux tube is divided into four regions and the integral fluid equations in each region are 
reduced to a set of nonlinear equations with physical variables at five positions (stagnation 
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point, upstream throats of divertor regions and sheath entrances). Exponential radial profiles 
with e-folding lengths, n, Te, Ti, are assumed. The five-point model can deal with the 
asymmetry of divertor plasmas, but the symmetry is assumed in this paper for simplicity. 
Electron particle flux and heat fluxes of electrons and ions across the separatrix, re, Qre, Qri, 
obtained in the TOPICS are used as inputs for the five-point model. Heat and particle 
diffusivities in the five-point model, D , e  and i , are set equal to those values at the 
separatrix in the TOPICS. The five-point model calculates the SOL electron density at the 
separatrix, neSOL, and temperatures, TeSOL and TiSOL, which are used as boundary conditions in 
the TOPICS. The particle source density due to recycling neutrals in the divertor region, Sd, is 
given by Sd = 'r d/Ld where d and Ld denote a particle flux to the divertor plate and a length 
of the divertor region along the magnetic field line, respectively. The divertor recycling 
coefficient 'r is modeled by 'r = (1 fdpump fdr)(1 exp( Ld/( n/(nediv< >iz)))) where  is the 
pitch of the magnetic field and the neutral velocity n = (Tn/m)0.5. The fraction fdpump is pumped 
out from the divertor and the fraction fdr radially escapes the divertor region and goes back to 
the core region. The ionization rate coefficient < >iz is a strong function of the divertor 
electron temperature, Tediv. 
 

2.4. Integration of neutral models 

 

We consider the particle balance in the whole regions and integrate neutral models in the 
TOPICS and the five-point model [13]. Plasma particle flow across the separatrix, r, goes to 
the divertor plates and the first wall. The plasma flow to the divertor plates, d, is calculated 
by d = 4 R 0

Lr
d(r)dr, where r= a, R, a, and Lr denote the major, minor radii and an 

effective distance between the separatrix and the first wall, respectively. The plasma flow to 
the first wall, w, is calculated by w = (D niSOL/ n)exp( Lr/ n)Ssep where Ssep is the area of the 
separatrix surface. A part of neutrals produced at the divertor plates, r d, are reionized in the 
divertor region. The global divertor recycling coefficient r is recalculated from the flux-tube 
value in the five-point model as r = 1 d(0) n(1 exp( Lr/ n))(1 'r)/( 0

Lr
d(r)dr). The 

remained part of neutrals produced at the divertor plates is pumped out from the divertor 
( dpump = fdpump d) or escapes from the divertor region to the radial direction ( nr = fdr d) or to 
the divertor throat ( nth = (1 fdpump fdr r) d). Then, these fractions nr and nth go to the core 
region. Neutrals produced at the first wall ( w) escape from the SOL to the core region. 
Neutrals are also added by gas puffing in the core region ( puf). 
 

3. Integrated simulation result 

 

The ELM activity is simulated for JT-60U like parameters: R = 3.4 m, a = 0.9 m,  = 1.5,  = 
0.26, Ip = 1.5 MA, Bt = 3.5 T and q95 = 4.5. The ELM parameters are chosen as ELM = 200 μs, 

ELM
max = 100 m2/s and ped = 0.05 on . The values of ELM and ped are typical values in 

experiments [1,14]. On the other hand, the value of ELM
max

 is chosen to obtain ELM energy 

and particle losses comparable with JT-60U experiments [14]. The other parameters are 
chosen as puf = 0.3 1022 s-1, fdpump = 0.01, fdr = 0.02, Lr=0.4 m and Tn = 3 eV. 
 

Figure 1 shows the time evolution of (a) the electron part of the stored energy, Wse, the ion 

part, Wsi, the total stored energy, Ws, (b) the volume averaged electron density, <ne>, (c) Qr, 

(d) re, (e) TSOL, Tdiv, (f) neSOL and nediv. The simulation starts at nearly stationary state and the 

reduction of diffusivities for the pedestal begins at t = 0.03 s. Along the pedestal growth, the 

temperature and density increase in the pedestal region and the stored energies and the 

averaged density increase in Fig.1(a) and (b). The ion SOL temperature is higher than the 

electron one, while the divertor plasma temperatures is lower than the SOL ones due to the 
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high recycling divertor plasma. In the progress of the pedestal growth, ELMs occur from t = 

0.2 s where medium-n modes (n = 8-11) become unstable. Figure 2 shows profiles of the 

electron temperature and density just before and after each ELM crash. A typical profile of 

the ELM enhanced diffusivity is shown in Fig.7(b) (narrower one). The ion temperature at the 

pedestal top, Tiped ~ 2 keV, is higher than the electron one Teped ~ 1.3 keV at the ELM onset. 

The collapse and the formation of pedestal profiles repeats and those profiles are almost the 

same in the ELMs. Thus, the energy loss is almost constant in each ELM crash.  

 

We consider the power balance in the ELM cycle. The power 

balance is approximately described by an equation, 

Ws' dWs/dt Pheat Ptr PCX, where Pheat is the heating power, 

Ptr and PCX are loss powers by the transport and the 

charge-exchange (CX). Figure 3 shows the time evolution of 

Ws, Ptr and PCX of the previous simulation in Fig.1. There are 

two periods; one is the ELM phase where the energy, WELM, 

is lost by PtrELM and PCXELM and the other is the inter-ELM 

phase where the heating recovers the stored energy 

depending on the loss powers, Ptrint and PCXint. The 

time-averaged equation is given by Pin Pheat Ws' Ptrint

+PCXint+PELM where Pin is the net heating power and Ws'  
is evaluated by a broken line in Fig.3. The ELM loss power, 

PELM, is defined by PELM=fELM WELM where fELM is the ELM 

frequency. For example, in the previous simulation, the 

power balance is kept as Pin=8.7 MW, Ptrint =5.4 MW, 

PCXint=1.6 MW and PELM=1.7 MW. 

 

4. Power dependence of ELM energy loss and cycle 

 

We study the power dependence of the ELM energy loss 

and cycle. Figure 4(a) shows the time evolution of Ws 

for three values of the net heating power. The collapse of 

pedestal profiles is almost the same among the different 

input powers, while the core stored energy increases 

with the input power. The ELM energy loss is almost 

constant in present conditions, WELM 67 kJ. 

Additionally, loss powers by the inter-ELM transport 

Fig. 1 Time evolution of (a) Wse, Wsi, Ws, (b) <ne>, (c) Qre, Qri, (d) re, (e) TeSOL, Tediv, TiSOL, Tidiv (f) neSOL 
and nediv. Profiles at each ELM are shown in Fig.2. 

Fig.2 Profiles of Te and ne 
just before and after each 
ELM crash in Fig.1. 

Fig.3 Time evolution of (a) Ws, 
(b) Ptr and PCX between ELMs for 
a simulation of Fig.1. 
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and the CX are almost constant, 

Ptrint 5.4 MW and PCXint 2.0 MW. 

Figure 4(b) shows the ELM 

frequency as a function of the net 

input power. Simulation results 

almost correspond to a line given by 

an analytical formula, fELM=( Pin

Ptrint PCXint )/ WELM. Thus, the 

ELM frequency linearly increases 

with the input power, as was 

observed in experiments [15]. 

 

5. Collisionality dependence of ELM energy loss and cycle 
 
 The effect of the pedestal collisionality is investigated. The 

pedestal density and temperature are varied by the gas 

puffing with puf = 0.3-2 1022 s-1. Thus, the normalized 
electron collisionality of the pedestal plasma, *ped = 

Rq95/ ee where ee is the electron mean free path, increases 
from 0.095 to 0.72. In the following ELMs after the first 

ELM, the ELM energy loss varies and saturates a certain 

value. Figure 5 shows the dependence of the saturated 
WELM, its electron component, We, and ion one, Wi, 

normalized by the pedestal energy, Wped, on *ped where the 
case with the lowest *ped corresponds to that in Fig.1. The 

saturated ELM energy loss deviates a little from that at the first ELM in [13], but the 

collisionality dependence is almost the same. Thus, the cause of the collisionality dependence 

is the same as found in [13]. The bootstrap current and SOL transport cause the dependence 

of the electron conductive energy loss. On the other hand, the electron convective energy loss 

is almost constant in the * variation because the ELM particle loss is independent of the 

collisionality as the same as found in experiments [1]. For lower collisionality, the ion 

temperature becomes higher than the electron one due to the ineffectiveness of the 

equipartition proportional to the collisionality. As a result, ion convective and CX losses bring 

the collisionality dependence of the ion energy loss. The reduction of the total energy loss 

becomes comparable with that in experiments [1]. 

 

In the present simulation, there are three loss power channels, Ptrint , PCXint and PELM. Figure 

6(a) shows the loss power ratio as a function of the collisionality where the collisionality is 

varied by the gas puffing in cases A-C. As the collisionality decreases, the inter-ELM 

transport is reduced and the ELM loss power is enhanced, as found in experiments [3]. Figure 

6(b) shows the ELM energy loss against the ELM frequency in the same cases. For almost 

constant inter-ELM transport in the high collisionality, the cases B and C, the large ELM 

energy loss reduces the ELM frequency by extending the time to recover the pedestal profile 

to its pre-ELM state. As a result, the loss power due to ELMs keeps almost constant, as was 

observed in experiments [4]. Thus, the ELM energy loss and the inter-ELM transport 

determine the ELM cycle. 

Here, we define the normalized energy confinement time between ELMs, E
int

*, by E
int

*  

E
int

/ B, where E
int

=Ws/Ptrint, B=a
2
/ B and the Bohm diffusivity B=Teped/16eB. In the JT-60U 

experimental analysis [4], a scaling of E
int

* was found as scal*=0.234( *ped)
-0.6

( *pol)
-0.7

, 

where *pol is the normalized poloidal gyro radius of the pedestal plasma. Figure 6(c) shows 

Fig.4 (a) Time evolution of Ws for Pin=8.7, 11 and 14 
MW. (b) fELM versus Pin. 

Fig.5 Dependence of WELM, 
We and Wi normalized by 

Wped on *ped. 
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the comparison of simulation results and the scaling where parameter ranges are 0.067 < *ped 

< 0.72 and 0.020 < *pol < 0.037. The *pol range is 0.020-0.029 in Fig.6(a) and thus the data 

with different values of Ip and Bt and so on is added in Fig.6(c). The inter-ELM energy 

confinement time agrees well with the JT-60U scaling. 

 

6. Dependence of ELM energy loss and cycle on the pressure gradient inside the pedestal 

 

The effect of the pressure gradient inside the pedestal top on 

the ELMs is investigated. The steep pressure gradient inside 

the pedestal top is one of the major features for improved 

H-mode plasmas. Figure 7(a) shows two profiles of the total 

pressure, p, just before each ELM crash where Pin~14 MW 
and the transport is reduced in a region of 0.8< <0.925 inside 

the pedestal top at =0.925 in the case with higher pressure. 

The pressure gradient inside the pedestal top is different, 

while the pedestal profile is almost the same and thus 

*ped~0.1 in both cases. Even the pressure gradient inside the 

pedestal top in the case with lower pressure is a little larger 

than those observed in JT-60U [14,16]. The HH98y2 factor 

increases from 0.97 to 1.3 in Fig.7(a). The steep pressure 

gradient inside the pedestal top broadens the eigenfunctions 

of unstable modes and thus the region of the ELM enhanced 

transport in Fig.7(b). The detailed dependence of the MHD 
mode structure on the pressure profile inside the pedestal was 
studied by using the MARG2D [17]. 
 

Figure 8 shows the time evolution of Ws for the two cases 

with p'in/p'ped= 0.14 and 0.53 in Fig.7 where p'in and p'ped 

denote dp/d  inside and at the pedestal, respectively. In the 

case with p'in/p'ped=0.14, medium-n modes produce the same energy loss in each ELM and the 

ELM cycle is regular as already shown in the previous sections. On the other hand, in the case 

with p'in/p'ped=0.53, subsequent instabilities arise. Figure 9 shows the time evolution of the 

pressure profile in an ELM at t~25 ms in Fig.8. A collapse makes regions with the steep 

pressure gradient, which causes the next instability. While the first instability is caused by 

medium-n modes (n~10), the subsequent ones are caused by higher-n modes (n>20), i.e., the 

infinite-n mode is unstable. In Fig.7, the subsequent instabilities move inward and thus do not 

Fig.6 (a) Dependence of Ptrint , PELM, and PCXint normalized by Pin on *ped where Pin=14-15 MW. 
(b) WELM versus fELM. (c) E

int* versus scal*. In (a) and (b), collisionality is varied by gas puffing in cases 

A-C and pressure gradient inside pedestal is steepened in case A'. In (b), dashed and dotted lines mean PELM

=4.6 and 5.8 MW, respectively. 

Fig.7 Profiles of (a) p just 
before each ELM and (b) 

ELM during the first 
instability for different 
pressure gradients inside 
pedestal top at =0.925. 
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much enhance the energy loss because the transport 

remains low near the separatrix at =1. When a 

subsequent instability arises near the separatrix, the 

energy loss is enhanced as shown in an ELM at t~43 

ms in Fig.8. The large amount of energy transported 

from the inside region induces the subsequent 

instability near the separatrix. As a result, in the 

case with the steep pressure gradient, the ELM 

energy loss varies and the ELM cycle becomes 

irregular sometimes. Figure 10 shows the 

normalized ELM energy loss WELM/Wped as a 

function of p'inped/p'ped, where an open circle 

represents a value obtained by taking account of only the first 

instability. The minimum value of the energy loss (closed 

circle with lower value), in which the subsequent instabilities 

arise far from the separatrix, is a little larger than those 

obtained by taking account of only the first instability (open 

circle). The dependence of the minimum energy loss on 

p'in/p'ped is almost the same as found in [12], in which only the 
first instability was taken into account and the density was 
not yet solved. As shown in Fig.10, the steep pressure 

gradient inside the pedestal top enhances the ELM energy 

loss by both the extension of the ELM enhanced transport in 

the first instability and the subsequent instability near the 

separatrix. 

 

As shown in Fig.6(a) (A for p'in/p'ped=0.14 and A' for 

p'in/p'ped=0.53), the inter-ELM transport is almost the same 

between the two cases in Fig.8. In the case with p'in/p'ped=0.53, 

the ELM frequency is evaluated by using continuous 

ELMs with the same energy loss (for example, t~6 and 

25 ms in Fig.8, lower loss in Fig.10). The evaluated 

ELM frequency is plotted as a function of the ELM 

energy loss in Fig.6(b). The large ELM energy loss 

reduces the ELM frequency so that the power loss due 

to ELMs keeps almost constant. The inter-ELM energy 

confinement time is also evaluated and plotted in 

Fig.6(c). The value of the inter-ELM energy 

confinement time with p'in/p'ped=0.53 almost agrees with, 

but deviates a little from the JT-60U scaling compared 

with the other data with p'in/p'ped~0.1. This may relate 

with the low pressure gradient inside the pedestal in 

JT-60U experiments [14,16]. 

 

7. Conclusion 

 

The ELM energy loss and cycle have been studied by using the TOPICS-IB. The TOPICS-IB 
reproduces a series of ELMs with the following characteristics. The ELM energy loss 
increases with decreasing the collisionality and the ELM frequency increases linearly with the 

Fig.8 Time evolution of Ws for 
p'in/p'ped=0.14 and 0.53 in Fig.7. 

Fig.9 Time evolution of (a) p 
and (b) ELM profiles in an 
ELM with p'in/p'ped=0.53 at 
t~25 ms in Fig.8 where lines 
denote 0.2 ms interval (solid 

dashed dotted  chain). 

Fig.10 WELM/Wped as a function 
of p'in/p'ped for *ped~0.1 where 
an open circle denotes a value 
obtained by taking account of 
only the first instability. 
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input power, as the same as experiments of type-I ELMs. The transport model with the 
pedestal neoclassical transport connected to the SOL parallel transport reproduces the 
inter-ELM transport, which decreases in the low collsionality so that the ELM loss power is 
enhanced as observed in experiments. The inter-ELM energy confinement time agrees with 
the scaling based on the JT-60U data. The steep pressure gradient inside the pedestal top, 
required for improved H-mode plasmas with the HH98y2 factor above unity, is found to enhance 
the ELM energy loss and reduce the ELM frequency so that the ELM loss power remains 
constant. The steep pressure gradient inside the pedestal top broadens the region of the ELM 
enhanced transport and induces subsequent instabilities. When the large energy is transported 
near to the separatrix by the instabilities, a subsequent instability arises near the separatrix and 
makes an additional loss. 
 
In order to validate our models, the further comparison with experiments and nonlinear 
simulations are future works. The model improvement, such as the transport model which 
determines the pressure gradient inside the pedestal top, the pedestal width, and so on, is 
necessary. Key physics of the JT-60U scaling of the inter-ELM energy confinement will be 

examined by artificially modifying the simulation model. The experimental analysis of the 
effect of the steep pressure gradient inside the pedestal top on the ELMs is underway. 
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