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Abstract: Theory for error-field-induced magnetic islands with the Alfvén resonance effect taken into
account is developed for rotating plasmas in cylinder model. Our results show that the Alfvén resonance
effect, changes dramatically the tearing mode parameter (A”) and consequently plays a crucial role in
the rotation suppression of the error-field-induced magnetic islands. Especially, for the small-error-field
case, the inclusion of the Alfvén resonance effect can lead to a complete rotation suppression of the
magnetic islands induced by the error field. The presence of the Alfvén resonance effect causes also a
significantly larger torque and alters the so-called forbidden band picture adopted in this field for physics
explanation of the low critical rotation frequency for resistive wall mode stabilization with reduced error
field observed experimentally.

1. Introduction

Stabilization of the resistive-wall modes (RWMs) [1] is one of the crucial issues to sustain
high-performance tokamak discharges. The plasma rotation stabilization of RWMs has been
confirmed both experimentally [2—4] and theoretically [5-10]. Extensive experimental efforts
have been made to measure the so-called critical rotation frequency for suppressing RWMs.
With the error field braking of the plasma rotation, the critical rotation frequency is measured
to be around a few percent of the shear Alfvén frequency [2]. Due to the evolution of the ex-
perimental facilities, both JT-60U and DIII-D have conducted the counter neutral beam braking
experiments to measure the critical rotation frequency. Surprisingly, it is found that the critical
rotation frequency is actually a few thousandth of the shear Alfvén frequency [3,4]. This big
drop in the critical rotation frequency from switching the error field to counter neutral beam
braking indicates the error field should play a critical role in deteriorating the plasma confine-
ment.

Theoretically, the presence of the error field causes the breaking of the toroidal symmetry.
Consequently, the magnetic islands can be created at the mode-resonant surfaces [11]. As
shown for example in Refs. [12] and [13], the static error-field-induced island can give rise to a
significant toroidal torque that brakes the plasma rotation. The balance between the magnetic-
island-induced and the viscous torques has been shown to form the so-called forbidden band
[12, 14]. Subsequently, the rotation bifurcation based on the forbidden band has been used to
explain the current experimental observation of the low critical plasma rotation [15, 16]. Such
a model predicts that the plasma rotation at the critical point is on the order of half of the
unperturbed rotation.

However, the present model for the forbidden band picture has not taken into account the Alfvén
resonance effect. The Alfvén resonance effect together with the Reynolds stress is investigated
in the ideal plasma in Ref. [17]. The Alfvén resonance effects on the magnetic island formation
were studied in Ref. [18] by using numerical simulation in a slab geometry. Subsequently, it is
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FIG. 1. Schematic picture of the geometry.

further investigated analytically in Ref. [19]. The linear theory of the Alfvén resonance effect
on the island formation is also investigated in Ref. [12]. In this paper, we extend the nonlinear
theory of Ref. [12] to include the Alfvén resonance effect. As explained below, we found a new
stationary state of non-rotating islands where the convection term balances with the A" term.
We discovered a new mechanism by which the islands can be eliminated due to the change
in the so-called tearing modes parameter A’ caused by the Alfvén resonances. As compared
with the analytical approach in Ref. [19], our numerical investigation allows us to consider the
dependence of A’ on the finite island width.

Physically, the Doppler shift due to the plasma rotation breaks the single resonance at the mode-
resonant surface into the twin resonances. For the case with the separation of the twin Alfvén
resonances being larger than the island width, these twin Alfvén resonances can change dra-
matically the way in which the magnetic perturbations approach to the mode rational surface
and consequently the pattern in which the magnetic islands are formed. This intuitive consid-
eration has motivated us to further investigate the Alfvén resonance effect on the formation of
magnetic islands. As expected, it is found that the Alfvén resonance effect is a crucial effect in
determining both the island formation and the toroidal torque that brakes the plasma rotation.

The present paper is organized as follows. In Sec. 2., Theory for error-field-induced magnetic
islands in the presence of the Alfvén resonances is developed; In Sec. 3., the numerical results is
shown and the Alfvén resonance effect on the error-field-induced islands is addressed; In Sec. 4.
conclusions and discussion are given.

2. Theory for error-field-induced magnetic islands with the Alfvén resonance effect taken
into account

In this section, we develop a theory for the error-field-induced magnetic islands. In difference
from the existing theories, the Alfvén resonance effect is taken into account in our current
theory. For simplicity, we use the cylinder model and consider only the case with the separation
of the twin Alfvén resonances being larger than the island width. As will be shown, even with
the latter restriction, there is still a large parameter domain that is interesting for the current
experiments. The system is described as follows: The plasma column is surrounded by the
vacuum region, the resistive wall locates in the vacuum region. The resistive wall is assumed to
be thin. Just outside the resistive wall, a thin error field current layer is present. The schematic
view of the geometry is shown in Fig. 1. Our derivation consists of mainly two parts: (i)
constructing the independent solutions in the outer regions and (ii) matching the independent
solutions across the resonance layers, wall, and the error-filed-current layer.
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2.1. Construction of the independent solutions

We first construct the independent solutions in various outer regions, where the time dependence
and dissipative effects can be neglected. These independent solutions will be connected by the
appropriate matching conditions derived in the next subsection. We focus ourselves on consid-
ering the current-driven instabilities and therefore the finite plasma beta effect is neglected.

Vacuum-II region: Let us first consider Vacuum-II region. In the vacuum region, we use
a scalar potential ¢ to express the perturbed magnetic field as B = V. Then y satisfies the
Laplace equation since V - B = 0. We assume that ¢ has the spacial dependence as el "0~(/Ro)2),
where the cylindrical coordinate system (r, 8, z) is used Since the Laplace equation is the second-
order ordinary differential equation, it has two independent solutions. The boundary condition,

Y — 0 at r — oo, selects one of the independent solutions as

yi(r) = (r/b)™, (M

where the superscript “vII” denotes “vacuum-II region”. Similar notations will be used in the
following. Then, the scalar potential in the vacuum-II region is expressed as

Y(r) = My (). 2)

Vacuum-I region: In the Vacuum-I region, we have two independent solutions. Here we
adopt
) = [0/b)" + (r/b)™1/2, U3l (r) = (r/b)™", (3)

where y3'(r) is connects smoothly onto ¢*"(r). The solutions y}'(r) and y}'(r) correspond to an
ideal-wall and no-wall solutions, respectively. By using these independent solutions, the scalar
potential in the vacuum-I region is expressed as

Y(r) = ey (r) + S (). (4)

Plasma-II region: In the Plasma-II region, we solve the following equation [20]:

4 (pn* Q2 — Fz)ri(rf)] - [mz(panz - F% - rd—F2 £=0 (5)
dr 0 dr 0 ar [ 7

where £ is the radial displacement of the plasma, p is the equilibrium mass density, ) is the
equilibrium toroidal rotation frequency, F is defined as F := k - B where k := mV60 — (n/R,)Vz
is the wave-number vector, m and n are the poloidal and toroidal mode numbers, respectively,
and Ry is the plasma major radius. The effect of rotation is negligible in almost whole region
except for the narrow layer around the mode-resonant surface where F' = 0. In the narrow layer,
the rotation frequency can be assumed constant. Therefore, it is sufficient to introduce constant
Q in Eq. (5). The mass density p is also assumed constant for simplicity. It is straightforward
to include the spatial dependence of Q2 and p. In integrating Eq. (5) from the plasma edge r = a
to the edge of the magnetic island r = ry + w/2, the Alfvén singularity at the position with
F? - p(nQ)* = 01is avoided by replacing nQ by nQ +iy with 0 < v < nQ, [10]. Equation (5)
is the second-order ordinary differential equation, and thus we have two independent solutions;
§‘I’H(r) and §§H(r). By using ¢}'(r) and y3'(r) as well as the continuity of perturbed magnetic
field and total pressure at the plasma edge [1], we can obtain boundary conditions for ﬁ’n(r) and
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gn(r) so that they smoothly connect to ideal-wall and no-wall solutions in the vacuum region,

respectively. Then the plasma displacement &(r) is expressed as

pIl .pII pIl pIl

Er)=cp & (N+c, & (), (6)

1l 11 . . )
where ¢ and ¢} becomes identical to ¢}' and ¢}, respectively.

Plasma-I region: Finally, in the Plasma-I region, we also solve Eq. (5) from the magnetic
axis r = 0 to the edge of the magnetic island r = ry — w/2. Since & must not diverge at r = 0,
one of the two solutions is dropped, and we adopt the other as the independent solution; &P'(r).
Then, we express the plasma displacement in this region as

&) = FE). (7)

2.2. Matching conditions and the magnetic island equation

Across magnetic island chain: The radial component of the perturbed magnetic field is ex-
pressed by B, = B - V& = i F£. By using linear approximation of F just outside the magnetic

islands, we have
- inB.S
B = -0, ®)
Rorg

where x := r—ry, B; s the equilibrium toroidal magnetic field and S is the magnetic shear S :=
r(dg/dr)/q at the rational surface. The safety factor is denoted by g. One of the matching con-
ditions is the continuity of B, across the island, which can be expressed as —&(—w/2) = &(w/2)
where the suffix means x = +w/2. If we normalize £”'(r) and &' () such that & (-w/2) =
EM(w/2) = &"(w/2), we obtain

Pl =P B 9)

It is noted that ¢! = c‘fH for the ideal wall case, whereas ¢’ = cgn for the no wall case. The

second condition is given by the r component of the induction equation:
0 ~ -
(—+V-V)Br:B-szr+£VzBr, (10)
ot Ho
where 17 denotes the plasma resistivity and yg is the vacuum permeability. Assuming that the
island width is much smaller than the separation of the Alfvén resonances, x < n€),, we find
that B - V¥, term can be neglected. It is noted that the magnetic shear S is considered to be of
order of unity. By considering stationary state with d/d¢ = 0 and by integrating Eq. (10) across
the island, we obtain the modified Rutherford equation [21],

~ /2
aB.jor|"
—inaQgw = LA’ where A = J

Mo B,
Here, a denotes a ratio of the rotation frequency inside the islands to that outside them, which
allows different rotation frequency between the plasma rotation frequency between inside and
outside the islands. This equation describes a new stationary state of non-rotating islands where
the convection term balances with the A” term. In the present paper, A’ is generally a com-
plex number, since we introduced the Alfvén resonances which make £P(r), g—“‘l’H(r) and §§H(r)
complex functions. By defining

4 E%w/2) +EV(-w)2) 4 Ew/2) +EV(-w/2)

e A A =

(11)

(12)
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and by using B, = i F¢ together with the expression for the island width w = 4(rg|B,|/mq’By)""*
[20], we obtain
8i weP (—w/2)"

A=A, - (AL, - A). (13)
w

Across the plasma boundary: The boundary conditions across this interface has been al-
ready 1mposed through the choice of boundary conditions for §pH(r) and §pH(r). We obtained

pIl pll
o —c1 and c, —cz.

Across the resistive wall and error field current layer: Here we adopt a thin-shell approxi-
mation. One matching condition is the continuity of the radial magnetic field through vacuum-I
to vacuum-II, which is imposed by setting ¢j' = ¢*"'. One more condition across the resistive
wall is given by the diffusion equation of the magnetic field. We integrate it across the resistive
wall in the thin-shell approximation to obtain

0B, w2 v
= k iUy (D) + Yoy 14
ot~ o (YT (B) + Yerr), (14)
where 1y, and ¢ are the resistivity and thickness of the wall, respectlvely, := (m/b)*+(n/Ry)?,

and Yo, = ((6Br/ Or)pes — (6Br/6r)b+5+52) /kOb. The continuity of B, across the wall has been
used. The parameter ., is proportional to the jump of the tangential component of the magnetic
field across the error-field-coil layer, and measures the strength of the error field. It is noted that
Yi(b) = - pI(—w/2)/§‘1’n(w/2). Assuming that d/d¢ is so small that it can be neglected [3, 4],
then we obtain

Ve (—w/2)/EW/2) = Yo (15)

Magnetic island equation: By using the above matching conditions, we obtain c‘l’II =]l =
werrflfn(w/ 2)/éP(-w/2), and therefore the island equation can be written as

i na Q2w = ALw? = 8i wE W/ 2 (AL, — A} (16)
n

By giving .| and choosing the phase of the error field appropriately, we may find the solution
w which must be restricted to be real and positive. Note that in our solution of Eq. (16) we have
considered that A’s depends on the island width w.

2.3. Toroidal torque

The perturbed magnetic field generates the torque on the plasma. By integrating the toroidal
torque in an axisymmetric domain inside the error field current layer, we obtain [12,22]

7, = =i T Rybk(Wert " (b) — Wit (). (17)
This torque has the same magnitude and the opposite direction as the total torque on the plasma.
3. Numerical results: Alfvén resonance effect on the error-field-induced islands

To show the Alfvén resonance effect on the error-field-induced islands, we solve Eq. (16) nu-
merically for the island width, and calculate Eq. (17) for the torque. The quantities shown
below are normalized by using the plasma minor radius a, the toroidal magnetic field B,, and
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the Alfvén time 75 := a/(B./ \uop). We adopt an equilibrium with toroidal current density pro-
file as ji(r) = jio(1 — ). The edge safety factor was chosen as g, = 2.2. For this current density
profile, we have gy = ¢q,/2 = 1.1. The rational surface of m/n = 2/1 locates at r = 0.9487,
and thus we expect that A}, — A has large value which may enhance the effect of the error field.
We also assume that the resistive wall is located at r = b = 1.1. The resistivity parameter was
chosen as n7/a = 1078,

It is interesting to show that the eigenfunc- 0.001 .

. L, . — Qp=0

tion changes by the Alfvén resonances. Fig- ol 102

ure 2 shows the comparison of the real part o

of perturbed radial magnetic field B, between -0.001 igz

the_ 2cases w1th(,)ut (Qy = 0) and with (QQy = ,%5— 0002 190(5) ________N‘\is:and

107) the Alfvén resonance effect. The plot- - ;

ted data has its island width w = 1072, In the -0.003 - |

rotating case, we find the spiky behavior of 0,004 e om 09 o 1 )
B, at the Alfvén resonances r = 0.9292 and Alfven resonances
0.9678. Although we do not show A’ explic- -0.005 02 oz 06 o8 1
itly in this paper because of limited space, r

we may understand that A’ is changed sig- FIG. 2. Comparison of perturbed radial magnetic
nificantly. It is noted that we have performed field between no-rotation and finite-rotation cases.
benchmark the numerical solution with the Spiky behavior is observed at the Alfvén resonances.

analytic solution [10] for the eigenfunction in the presence of the Alfvén resonance.

Fig. 3 shows the island width as a function of |.|. In the figure, “w/ A.r. (w/o A.r.)” de-
notes data with (without) the Alfvén resonances: for “w/ A.r.”, the plasma rotation effects are
included as the Alfvén resonances in Eq. (5) as well as in the island equation (16), on the other
hand, for “w/o A.r.”, the plasma rotation effect is included only in Eq. (16) and €} is set to zero
in Eq. (5). Without the Alfvén resonance effect, the island of width w = 1072 can be generated
by || of order of 1073. On the other hand, with the Alfvén resonance effect included, sig-
nificantly large || is needed to generate the islands. If we set Oy = 0 in both Egs. (5) and
(16), w = 1072 is obtained for || ~ 107. Figure 3 also shows the scaling change due to the
inclusion of the Alfvén resonances. When the Alfvén resonances are included, the island width
w is proportional to |y..|*” approximately for relatively large w, whereas |.|'/* in the absence
of the Alfvén resonances [12]. For small w, slight change of || can lead to significant change
of w in the presence of the Alfvén resonances.

These observation can be seen alternatively 0.02

from the figure of the island width versus —_— Q=10 W Ar) i

the rotation frequency. Figure 4 shows the ~ |wmn 5x107 (w/ )

island width as a function of plasma rota- 0.015 o 102 (w1 )

tion frequency. The island width decreases ~~  |=~ 103 (w/o A.r.)

as the rotation is increased. It is noted that ~ = 0.01 f~ 5x10°° (wio)

“sep.Alfires” in Fig. 4 denotes the separa- | > | Werd

tion of the Alfvén resonances. Since the is- 0.005 [ | Ven

land width is assumed to be smaller than the |

separation of the sep.Alf.res., we stopped the O1 0710 P 16'4 103 1(‘)_2 16'1 10

calculation of w if w is smaller than one half

v,
of the sep.Alf.res. Thus no data for “w/ FIG. 3. Island width as a fugétion of error field.
A.r”” is shown for the small w range. The
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island width is proportional to Q; ! approximately for relatively large || in the presence of
the Alfvén resonances, whereas Qal/ 3 in the absence of them [12]. These observations show
that the rotation suppression of the error-field-induced magnetic islands is mainly through the
induced Alfvén resonances. Most importantly, the Alfvén resonance can completely suppress

the island formation by a small error field.

From the crucial role of the Alfvén reso-

nances in suppressing the error-field-induced 003 1 | Y2108 (W AL) =
magnetic islands, one can expect that they . _310-2 (W) ==
should also bear a significant portion of 002 | % 10 1(8{/20(@'/2) e
the torque generation. Figure 5 shows the s o %} -
toroidal torque on the plasma, denoted by N o Qg
-7, as a function of the plasma rotation fre- 001 e s SERAIT TE
quency €. Two important conclusions can e

be drawn from our numerical results. First, 0 \ ‘ ‘ ‘

the torque increases as the plasma rotation 0 0.005 0.01 0015 0.02
frequency, as well as the island width, in- o

creases. This is opposite to the case in which  FIG. 4. Island width as a function of plasma
the Alfvén resonances are neglected. Sec-  roroidal rotation frequency.

ond, one can also note that the torque magni-

tude becomes significantly larger by including the Alfvén resonances, as it should be in view of
the big change in magnetic island width. Note that the figure of torque versus plasma rotation
has been used to construct the so-called forbidden band [14]. The forbidden band is generated
by the loss of torque balance at Q < €y/2, and the loss is based on the fact that the magnetic
torque decreases as the plasma rotation increases. However, it is shown that the magnetic torque
can increase (by an order of magnitude) for the regime Q > €,/2 when the Alfvén resonance
effect is taken into account. Consequently, £0y/2 is no longer the threshold, and the conventional
explanation for RWM stabilization would need to be changed.

4. Conclusions and discussion

In this paper, we developed a theory for static

magnetic island induced by the error field > " —— IWeEr|:5X10'3 (W/‘ Ar) 14
with the Alfvén resonance effect taken into ~ 4l e 07 (w/ 3 ¢ ~
consideration for rotating plasmas in cylin- < ’ : éflg'el’(()w/éw,i r)) ‘" 13 <
der model. The theory applies to the case 3 37 B s 1072 (wio) - 2
with magnetic islands lying inside the twin 4 e 15% 107 (w/o) ‘\‘\‘\u“\ 2
Alfvén resonances. This happens usually for % 205 * ot %
relatively large plasma rotation. Even with lT? 1| 1 TS‘
this restriction, our parameters still cover

a considerable parameter range that fits the 0 X0
current experiments. The data we show in- 0 0.005 %01 0015 0.02

dicates that the current results are applicable  FIG. 5. Toroidal torqueoas a function of plasma
roughly to the rotation frequency which is in  toroidal rotation frequency.

the range of the so-called critical rotation fre-

quency (a few thousandth of the shear Alfvén frequency) or above [3,4]. Several important
conclusions have been found from the current investigation: (1) The Alfvén resonance effect
changes dramatically the tearing mode parameter (A’); (2) The Alfvén resonance effect can en-
hance the rotation suppression of the error-field-induced magnetic islands. Especially, for the
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small-error-field case, the inclusion of the Alfvén resonance effect can lead to a complete ro-
tation suppression of the magnetic islands induced by the error field; (3) The presence of the
Alfvén resonance effect causes also a significantly larger torque and alters the pattern of the
dependence of the torque versus the plasma rotation; (4) We also find that the scaling of the
island width versus the strength of the error field is changed from Ve |'/? to [fer|*” due to the
inclusion of the Alfvén resonances for relatively large w. For small w, slight change of || can
lead to significant change of w in the presence of the Alfvén resonances. When |y.,| is relatively
large, the island width w scales as Q;'. Note that the figure of torque versus plasma rotation
has been used to construct the so-called forbidden band to interpret the current experimental
observations about the low critical plasma rotation for RWM stabilization with reduced error
field. Our results indicate that a reconstruction of the so-called forbidden band is needed for
including the Alfvén resonance effect.
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