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Abstract. Effects of a toroidal rotation are investigated numerically on the stability of the MHD modes in the edge
pedestal, which relate to the type-I edge-localized mode (ELM). A new linear MHD stability code MINERVA is
developed for solving the Frieman-Rotenberg equation, which is the linear ideal MHD equation with flow. As the
result of the stability analysis, it is revealed that the sheared toroidal rotation destabilizes the edge localized MHD
modes. The change of the safety factor profile affects this destabilizing effect. This is because the rotation effect
on the edge MHD stability becomes stronger as the toroidal mode number of the unstable MHD mode increases,
and this toroidal mode number strongly depends on the safety factor profile.

1. Introduction

An ideal magnetohydrodynamic (MHD) mode unstable near the plasma surface is the cause of
the type-I edge-localized mode (ELM), which constrains the maximum pressure gradient in the
pedestal at the tokamak edge region. From the viewpoint of the heat load on the divertor, the
type-I ELM needs to be suppressed or its amplitude needs to be reduced. The recent experimen-
tal results in JT-60U show that the toroidal rotation near the pedestal has an impact on the ELM
phenomena. For example, in JT-60U, the ELM frequency changes from ∼ 20Hz to ∼ 1.4kHz
as the toroidal rotation frequency decreases from 1kHz to −3kHz[1], where the sign of the rota-
tion frequency is determined by the direction relative to the plasma current. In other words, the
type-I ELM changes to the grassy-ELM as the toroidal rotation decreases. Such a change of the
ELM frequency is observed only in a high-q, high-βp, and strongly shaped equilibrium, where
q is the safety factor, βp is the poloidal beta value. Since the previous work showed that the
cause of the grassy-ELM is also the ideal MHD mode whose mode structure is narrower than
that of the type-I ELM[2], it is necessary to understand the toroidal rotation effects on the edge
MHD stability analytically and numerically. As one of the past numerical studies, in Ref.[3],
the authors investigated the dependence of the growth rate on the rotational shear in several n
cases, and illustrated that the rotational shear destabilizes the low-n MHD mode but stabilizes
the high-n MHD mode. However, it is also important to understand the toroidal rotation effect
on the stability boundary of the edge localized MHD modes.

In this paper, we focus on the toroidal rotation effect on the stability boundary of the edge
localized MHD mode. As is well known, since the plasma rotation violates the Hermitian
property of the linear ideal MHD equation[4], the eigenvalue problem approach with the normal
mode analysis is sometimes inadequate to solve such a non-Hermitian problem; this is because
a set of the particular solutions with variable separation is not generally complete unlike in a
hermitian system. For solving numerically such a non-Hermitian problem with high accuracy,
we develop a new linear MHD stability code MINERVA (Mhd INitial value and Eigenvalue
pRoblems solver with a VAriational principle) that solves the linear ideal MHD equation with
a toroidal rotation as the initial value problem[5]. With this code and the MHD spectrum code
MARG2D[6, 7], we investigate the effect of a toroidal rotation on the stability boundary of
edge localized MHD mode. Particularly, we pay attention to the difference between the rotation
effects in the low-q and high-q equilibria.
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This paper is organized as follows. Section 2 introduces the basic equations of the MINERVA
code for the stability analysis of ideal MHD modes in a rotating axisymmetric equilibrium.
Section 3 describes the results of stability analysis of edge localized MHD modes in the low-q
and the high-q equilibria. Section 4 presents a summary of this work.

2. Basic Equations

To investigate the rotation effect on the macroscopic phenomena in tokamaks, we adopt the
single-fluid ideal magnetohydrodynamic (MHD) equations with flow. In this paper, we consider
an equilibrium rotation in the toroidal direction as

u0 = R2Ω(ψ)∇φ, (1)

where u0 is the equilibrium velocity, Ω(ψ) is the rotation frequency and ψ(R,Z) is the poloidal
flux function in the cylindrical coordinate system (R,Z, φ). As mentioned in Ref.[8], the equi-
librium can be obtained by solving the Grad-Shafranov equation with toroidal flow

∆∗ψ = −R2 ∂p
∂ψ

∣∣∣∣∣
R
− F(ψ)

dF(ψ)
dψ

, (2)

∆∗ ≡ ∂2

∂R2 −
1
R
∂

∂R
+

∂2

∂Z2 , (3)

where p is the plasma pressure and F is the toroidal magnetic field function. With the isothermal
condition on each magnetic surface T = T (ψ), p can be written as

p = p0(ψ) exp
[
M2

(
R2

R2
0

− 1
)]
, (4)

where T is the ion temperature and M is the Mach number defined as a ratio of the toroidal
rotation velocity vφ = R0Ω to the ion thermal velocity vth =

√
2T/mi,

M2(ψ) ≡
(

vφ
vth

)2

=
miR2

0Ω
2

2T
=
ρR2

0Ω
2

2p
. (5)

The linear MHD stability in the equilibrium with flow can be identified by solving the Frieman-
Rotenberg equation[9]

ρ
∂2ξ

∂t2 + 2ρ(u0 · ∇)
∂ξ

∂t
= F(ξ), (6)

F = Fs + ∇ ·
[
ρξ(u0 · ∇)u0 − ρu0(u0 · ∇)ξ

]
, (7)

Fs = ∇
[
ξ · ∇p + Γp∇ · ξ] + (∇ × Q) × B + j × Q. (8)

Here ξ is the Lagrangian displacement, ρ is the plasma density, Fs is the static part of the
force operator, Γ is the ratio of the specific heats, j is the plasma current density, and Q is the
fluctuation of the magnetic field given by

Q ≡ ∇ × (ξ × B) . (9)

As already mentioned in Ref.[4], in the bilinear form (weak form) of Eq.(6) obtained by intro-
ducing the vector function η, the force operator term

Wp[η, ξ] = −
∫
η∗ · F(ξ)dτ =

〈
η
∣∣∣Wp |ξ

〉
, (10)
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and the kinetic energy term

K[η, ξ] =
∫
η∗ · ρ∂

2ξ

∂t2 dτ =
〈
η

∣∣∣∣∣∣K
∣∣∣∣∣∣∂2ξ

∂t2

〉
, (11)

retain a hermitian property as those in the static case[10], but the convective term

U[η, ξ] =
∫
η∗ · ρ(u · ∇)ξdτ =

〈
η

∣∣∣∣∣U ∣∣∣∣∣∂ξ∂t

〉
, (12)

has an anti-hermitian property U[η, ξ] = −U∗[ξ, η]. Due to this anti-hermitian convective term,
an ideal MHD stability problem with an equilibrium flow becomes a non-hermitian problem,
unlike that in a static system (Energy Principle).

Moreover, to investigate the stability of external (free boundary) MHD modes, we need to
calculate the potential energy of the vacuum magnetic field surrounding the plasma,WV . The
MARG2D code adopts a useful numerical method for estimatingWV with the vector potential
technique, and realizes to investigate the stability of a wide n range of external MHD modes
in a static equilibrium with a high level of accuracy[11]. With this technique, the perturbed
magnetic fields in the vacuum QV are expressed as

QV = ∇ × A, A ≡ ξV × CV , (13)

where ξV is the unknown vector called a pseudo-displacement vector in the vacuum, CV is the
solenoidal field (∇ · CV = 0) defined as

CV = ∇φ × ∇ψV + TV∇φ, (14)

ψV is the quasi-magnetic surfaces in the vacuum, and TV is a function of ψV and ζ in the auxiliary
coordinate system (ρ, ζ, φ)

R = R0 + ρ cos ζ, Z = ρ sin ζ, (15)

where R0 is the major radius of the plasma. With this ξV and the vector function ηV ,WV can
be expressed as

WV = 2π2
∫ ψVmax

ψp

〈
ηV

∣∣∣WV

∣∣∣ξV

〉
dψV , (16)

where the continuous condition of the normal component of the perturbed magnetic field Q · n
at the plasma surface (r = a0, ψV = ψp) is given as

ξ · ∇ψ|r=a0 = ξV · ∇ψV |ψV=ψp = YV(ψV = ψp), (17)

a0 is the plasma minor radius, and ψVmax is the ψV value at the wall, which can be determined
arbitrary. Since this bilinear form does not change in the case including a toroidal rotation, we
obtain the bilinear form including the vacuum energy as∫ a0

0

[〈
η

∣∣∣∣∣∣K
∣∣∣∣∣∣∂2ξ

∂t2

〉
+ 2

〈
η

∣∣∣∣∣U ∣∣∣∣∣∂ξ∂t

〉
+

〈
η
∣∣∣Wps −Wpd |ξ

〉]
dr

+

∫ ψVmax

ψp

〈
ηV

∣∣∣WV

∣∣∣ξV

〉
dψV = 0. (18)

On the basis of this bilinear form Eq.(18), we have developed the MINERVA code with the
finite element method (FEM). Since the normal mode approach (ξ ∝ exp(ıωt)) is not necessarily
suitable for capturing the fastest growing instability in a non-hermitian system, the MINERVA
code solves not only the eigenvalue problem but also the initial value problem[5].
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FIG. 1. (a) Contours of the poloidal magnetic flux ψ (magnetic surfaces) of the ITER-like D-shape
equilibrium. (b) Profiles of p0 (red line) and q (blue line) in the low-q equilibrium (solid line) with
Cp = 4.00 and C j = 0.60 and the high-q equilibrium (broken line) with Cp = 2.60 and C j = 0.65,
respectively. (c) Profiles of the toroidal rotation frequency of the profiles Rot.1 and Rot.2 normalized
with the toroidal Alfvén frequency at the axis ωA0.

3. Effect of the toroidal rotation on the edge MHD stability

In this section, we investigate an effect of the toroidal rotation on the stability of edge localized
MHD modes with the MINERVA code. As mentioned in Introduction, we pay attention to the
difference between the rotation effects in the low-q and high-q equilibria.

The equilibrium analyzed in this paper has a ITER-like D-shape cross-section that will be
realized in JT-60SA future device; the ellipticity κ and triangularity δ are (1.65, 0.35) in the
upper side and (2.00, 0.58) in the downer side as shown in Fig.1(a). The parameters (R0[m],
a0[m], Bt0[T]) are (3.00, 0.97, 4.00), and the profiles of dp0/dψ and 〈 j · B〉/〈B2〉 are given as

dp0(ψ)
dψ

= βp

((
1.00 − ψ5.0

)1.5
+Cp · exp

(
(ψ − 0.96)2

2.25 × 10−4

))
, (19)

〈 j · B〉
〈B2〉 ∝

(
1.0 − ψ1.5

)1.2
+ 0.15 exp

(
(ψ − 0.91)2

1.44 × 10−2

)
· cos

(
π

2
ψ10

)
+C j · exp

(
(ψ − 0.96)2

4.00 × 10−4

)
, (20)

where a0 is the minor radius of the plasma and Bt0 is the toroidal magnetic field at the axis. The
second term in RHS of Eq.(19) and the third term in RHS of Eq.(20) make the steep pressure
gradient and the virtual edge bootstrap current density near ψ = 0.96, respectively. Hereafter, ψ
is normalized as ψ = 0 at the axis and = 1 at the plasma surface. The plasma current Ip and the
poloidal beta value βp are determined as (Ip[MA], βp) = (4.90, 0.64) in the low-q equilibria and
(2.60, 1.20) in the high-q equilibria; the normalized beta values βN are almost same as 2.00. The
typical profiles of p0 and q in the low-q equilibrium with Cp = 4.00 and C j = 0.65 and those
in the high-q equilibrium with Cp = 2.60 and C j = 0.60 are shown in Fig.1(b). We investigate
the stability boundary of the edge localized MHD modes in these equilibria by changing the
parameters Cp and C j.

The equilibrium rotation profile is determined as

Ω(ψ)[kHz] =

 Ω0m + (Ω0i − Ω0m) ·
(
1.00 −

(
ψ

0.90

))
(ψ ≤ 0.90),

g1 − g2 + (Ω0m + g2) ·
(
1.00 −

(
ψ−0.90

0.10

)2
)2

(ψ > 0.90),
(21)
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FIG. 2. Stability diagram of the low-q equilibria on (a) the s96-α96 plane and (b) the jped-α96 plane
in each rotation profile (no rotation, Rot.1, and Rot.2) case. The numbers in these figures show the n
number of the most unstable MHD mode at each (s96, α96) / ( jped, α96). The edge localized MHD modes
become unstable as the sheared rotation increases, and this destabilizing effect of the sheared rotation
becomes stronger as the n number of the MHD mode increases.

where Ω0i and Ω0m are the rotation frequencies at ψ = 0.00 and 0.90, and

g1 =(Ω0i −Ω0m) ·
(
1.00 −

(
ψ

0.90

))
, (22)

g2 =(Ω0i −Ω0m) ·
(
1.00 −

(
1.00
0.90

))
' −0.11 · (Ω0i −Ω0m). (23)

We investigate an effect of the toroidal rotation on the edge MHD stability by changing (Ω0i[kHz],
Ω0m[kHz]) from (0.00, 0.00) to (9.00, 3.00), named Rot.1, and (45.00, 15.00), named Rot.2; the
profile Rot.1 is similar to the experimental data in JT-60U E46109[1] and the profile Rot.2 is
five times larger than the profile Rot.1. These Ω(ψ)/ωA0 profiles are shown in Fig.1(c), where
ωA0 is the toroidal Alfvén frequency at the axis. The density profile in each equilibrium is as-
sumed as constant. The n range of the MHD mode analyzed numerically is from 1 to 40, and
the mesh number NR and the minimum/maximum truncated poloidal mode numbers Mmin/Mmax

are determined to obtain the well-converged growth rate in each n case. The conducting wall
surrounding the plasma is placed at d/a = 2.00, where d is the minor radius of the conducting
wall.

3.1. Rotation Effect in the low-q equilibrium

In this subsection, we investigate a rotation effect on the stability of edge localized MHD
modes in the low-q equilibrium. Figure 2 shows the results of the stability analysis in the
low-q equilibria on (a) the s96-α96 plane and (b) the jped-α96 plane, where s is the magnetic
shear defined as s ≡ 2V/q(dq/dV), V is the volume, α is the normalized pressure gradient as
α ≡ −(µ0/2π2)(dp/dψ)(dV/dψ)(VR/2π)0.5, µ0 is the permeability in the vacuum, the subscript
96 expresses the value at ψ = 0.96, and jped is the volume averaged current density near the
pedestal (0.92 < s < 1.00) normalized with the volume averaged current density in the plasma.
As shown in these figures, the stability boundary of edge localized MHD modes in the ro-
tating equilibrium with profile Rot.1 is almost same as that in the static equilibrium, but that
in the rotating equilibrium with profile Rot.2 moves to the smaller α96 side. As the result of
such a shift of the stability boundary, the maximum pressure gradient becomes smaller from
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FIG. 3. Stability diagram of the high-q equilibria on (a) the s96-α96 plane and (b) the jped-α96 plane
in each rotation profile (no rotation, Rot.1, and Rot.2) case. The numbers in these figures show the n
number of the most unstable MHD mode at each (s96, α96) / ( jped, α96). The edge localized MHD modes
become unstable as the sheared rotation increases, but the effect of the sheared rotation on the stability
boundary is weaker than that in the low-q equilibria shown in Fig.2.

α96−max ' 5.99 to ' 5.85 as the rotation increases. Moreover, the n number of the MHD modes,
which determine the stability boundary, becomes larger as the rotation frequency increases, and
the destabilizing effect of the sheared toroidal rotation becomes stronger as the n number of
the MHD mode increases. This result is consistent with the results of the qualitative and quan-
titative analyses of the rotation and the rotational shear effects on the edge MHD stability in
Ref.[5], and the main reason of this destabilization is thought as the rotational shear near the
plasma surface.

3.2. Rotation Effect in the high-q equilibrium

Next, in this subsection, we investigate the rotation effect on the edge MHD stability in the high-
q equilibrium. Figure 3 shows the stability diagrams in the high-q equilibria on (a) the s96-α96
plane and (b) the jedge-α96 plane. As in the low-q case shown in Fig.2, the stability boundary in
the rotating equilibrium with profile Rot.1 is almost same as that in the static equilibrium, and
that in the rotating equilibrium with profile Rot.2 also moves to the smaller α96 side. However,
there are three differences between the results in the low-q and the high-q cases. One is the
maximum pressure gradient at ψ = 0.96; in the high-q case, α96 can reach to 8.41 though the
maximum α96 is restricted near 5.99 in the low-q static case. The second is the destabilizing
effect of the toroidal rotation. In the high-q case, since this destabilizing effect is weaker than
that in the low-q case, the maximum pressure gradient at ψ = 0.96 is almost unchanged though
the rotation profile becomes Rot.2. The last one is the n numbers of the edge localized MHD
modes that determine the stability boundary. In the high-q equilibria, the n numbers of the
MHD modes are smaller than those in the low-q equilibria; for example, the n number of the
MHD mode that restricts the maximum pressure gradient changes from 9 in the low-q case to 4
in the high-q case.

The reason of these differences is thought as the difference of the infinite-n ballooning mode
stability near the pedestal. Figure 4 shows the stability diagram of the edge localized MHD
modes and the infinite-n ballooning mode on the s-α plane at ψ = 0.96, 0.97, and 0.98 in (a) the
low-q and (b) the high-q static equilibria, respectively. As shown in these figures, the second
stability region of ballooning mode in the high-q equilibria is wider than that in the low-q ones at
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FIG. 4. Stability diagram of the edge localized MHD modes and the infinite-n ballooning mode on the
s-α plane at ψ = 0.96, 0.97, and 0.98 in (a) the low-q and (b) the high-q equilibria. The notes in these
figures show the kind of the MHD modes, the kink/peeling mode, the ballooning mode, and the peeling-
ballooning mode (PBM), that restrict the stability boundary at each (s, α) point. The second stability
region of ballooning mode in the high-q equilibria is wider than that in the low-q equilibria; particularly,
the minimum s of the ballooning mode stability boundary at ψ = 0.98 increases from s 6.20 to 8.00.

each magnetic surface; particularly, at ψ = 0.98, the minimum s of the ballooning mode stability
boundary increases from s ∼ 6.20 to ∼ 8.00. In general, the stability boundary of current-driven
kink/peeling mode, which is the lower stability boundary of s, is mainly determined by the
amount of edge current density and the edge safety factor[12], and the edge localized MHD
mode, called the peeling-ballooning mode (PBM), can be stabilized as the stability boundaries
of the infinite-n ballooning mode and the kink/peeling mode become far from each other[13].
From this viewpoint, compared to the results in the high-n equilibria, the stability boundary
of the kink/peeling mode in the low-n equilibria approaches to that of the infinite-n ballooning
mode, particularly at ψ = 0.98; in other words, the ballooning mode can become unstable easier
in the low-q equilibria than in the high-q ones. This difference of the stability property directly
affect the maximum pressure gradient at the pedestal and the n number of the edge localized
MHD modes, and as mentioned in the previous subsection, due to increasing the n number of
the unstable mode, the destabilizing effect of the sheared toroidal rotation becomes strong in
the low-q equilibria.

From the results in this section, we reveal that the sheared toroidal rotation destabilizes the
edge localized MHD modes, and the increase of the sheared rotation reduces the achievable
pressure gradient becomes smaller at the pedestal. Since this destabilizing effect becomes
stronger as the n number of the MHD mode increases, the sheared toroidal rotation is subject to
destabilize the equilibrium with narrower second stability region of ballooning mode.

4. Summary

An effect of the sheared toroidal rotation has been analyzed numerically on the stability bound-
ary of the edge localized MHD mode by using newly developed code MINERVA. We pay
attention to the difference of the rotation effects on the edge MHD stability in the low-q and the
high-q equilibria. As the result, it has been revealed that the sheared toroidal rotation has the
destabilizing effect on the edge localized MHD modes, and this effect becomes stronger as the
toroidal mode number of the MHD mode increases. In the numerical analyses performed in this
paper, since the toroidal mode number of the edge localized MHD mode tends to be larger as
the q profile changes from the high-q profile to the low-q one, the effect of the sheared toroidal
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rotation appears clearly in the low-q equilibria.
In this paper, we focus on the rotation effect on the stability boundary of edge localized

MHD modes. To discuss the amplitude of ELMs, it is necessary not only to investigate not only
the stability boundary but also to estimate the ELM size; for example, the ELM size can be
estimated with the width of the eigenfunction of the MHD mode[14]. By using the MINERVA
code, the structure of the eigenfunction can be obtained, and an effect of the toroidal rotation
will be discussed on as soon as possible.

Moreover, the numerical results imply that the effect of the toroidal rotation is weak on the
MHD stability at the pedestal when the profile is similar to the experimental data. However, note
that the edge MHD stability strongly depends on not the rotation frequency but the rotational
shear near the plasma surface[5]. Also note that the measurement of the rotation profile near
the plasma surface still has some ambiguities; for example, if the plasma has finite rotation
frequency at the plasma surface, the edge rotational shear can multiply many times. Hence, it
is important to analyze the rotation effect quantitatively and to compare with the experimental
results for understanding the the dependence of the ELM frequency on the rotation effect on
the edge MHD stability. These studies are necessary for revealing the physical mechanisms
that link to the control/stabilizing methods of the edge localized MHD modes, which is one of
the key factors to realize type-I ELM-free high performance plasmas, and we will report on the
research of this issue elsewhere.
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