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Abstract. Several aspects of plasma turbulence and transport at a tokamak edge have been studied by three

dimensional numerical simulations of resistive ballooning turbulence in a toroidal geometry. These simulations

have been realized with a three dimensional global code which calculates the evolution of the pressure and the

electrostatic potential at the plasma edge and also includes self-consistent electromagnetic fluctuations. The

level of magnetic fluctuations present in the system is linked to the plasma beta (the ratio between the kinetic

pressure and the magnetic pressure). The competition between different mechanisms for driving flows (Reynolds

stress, Maxwell tensor) is studied as a function of beta. In order to characterize the stationary turbulent state

of the plasma we use standard and sophisticated statistical tools, e.g. probability density functions (PDFs) and

the Extended Self-Similarity method. We also study the dynamics of transport barriers at the plasma edge that

are key elements of high confinement modes (H–modes) in fusion devices. In these simulations the transport

barrier exhibits intermittent relaxation cycles. It is found that magnetic fluctuations have negligible influence

on the relaxation process while the magnetic activity is enhanced during these relaxations, in agreement with

experimental observations. Additionaly, the simulations reveal that resonant magnetic perturbations (RMPs)

have a stabilizing effect on the transport barrier relaxations.

1. Introduction
In hot magnetized plasmas, the main component of the radial transport is supposed to be

anomalous, e.g. not due to collisions and diffusion processes. This radial transport is strongly
linked to the presence of instabilities in the plasma which give rise to both, electrostatic and
magnetic perturbations. Experimental measurements of fluctuation levels on typical fusion
devices reveal that electrostatic fluctuations are dominant and can reach a level of 50% at the
plasma edge. Magnetic fluctuations are much smaller in such experiments. However, as even
small magnetic perturbations (∼ 10−4) can locally modify the topology of the magnetic sur-
faces, such fluctuations play an important role with respect to the transport properties of the
plasma. Here, we show results from turbulence simulations at a tokamak plasma edge, realized
with a three dimensional global code, evolving self-consistently electromagnetic fluctuations
as well as the pressure and ExB velocity profiles. We first concentrate on the characterization
of turbulent self-organization and the competition between different mechanisms for driving
flows (Reynolds stress, Maxwell tensor). Then, we focus on the dynamics of transport barriers.
Transport barriers at plasma edge are a key elements of high confinement modes (H–modes)
in fusion devices. In general, they are not stable but relax quasi-periodically. Experimental ob-
servations have revealed a strong magnetic activity associated to such relaxation events. The
turbulence simulations presented here reproduce complete cycles of transport barrier relax-
ations in presence of self-consistent electromagnetic fluctuations.
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Figure 1: Evolution of confinement time
(left), mean electrostatic potential (middle)
and electromagnetic fluctuations (right) in
time for different value of αN.
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Figure 2: Averaged value, respectly to Eq. ,
for turbulent flux (a), Reynolds stress (b) and
Maxwell tensor (c). Ratio between Reynolds
stress and Maxwell tensor for different values
of the αN parameter (d).

Electromagnetic plasma edge turbulence is simulated here using a resistive ballooning model.
The latter is based on fluid equations for the normalized electrostatic potential φ, electromag-
netic flux ψ and pressure p [1].

∂t∇2
⊥φ+

{
φ,∇2

⊥φ
}

= − 1
αN

∇‖∇2
⊥ψ−Gp+ν∇4

⊥φ, (1)

∂t p+{φ, p} = δcGφ+χ‖∇2
‖p+χ⊥∇2

⊥p+S, (2)

∂tψ = −∇‖φ+
1

αN
∇2
⊥ψ. (3)

Equation (1) corresponds to the normalized charge balance, Eq. (2) is the normalized energy
balance and Eq. (3) corresponds to the Ohm’s Law. ∇⊥ and ∇‖ respectively correspond to the
parallel and perpendicular gradients along field lines. G is the curvature operator, ν represents
the viscosity, χ‖ and χ⊥ are the parallel and perpendicular thermal diffusivities respectively.
Time is normalized by the resistive interchange time τint =

√
R0Lp/2/cS, where cS is the sound

speed, R0 is the major radius and Lp is the pressure gradient length. The perpendicular and

parallel length scales are the resistive ballooning length ξbal =
√

ρη‖/τintLs/B0 and the mag-

netic shear length Ls, respectively. Here, ρ is the mass density and η‖ the parallel resistivity.
q(r) stands for the safety factor which measures the magnetic field line pitch. αN is expressed
by α = q2αN where α is the normalized pressure gradient typically used to express the stability
limit for ideal ballooning modes, α � 1 [2]. αN is also related to the β parameter (the ratio
of kinetic pressure to the magnetic pressure) through αN = βL2

s/(R0Lp). The parameter δc is
defined by δc = 2ΓLp/R0, Γ is the heat capacity ratio (Γ = 5/3). The last term of the r.h.s. of
Eq. (2), S(r) represents a constant energy source.

2. Self-Organization of Plasma in presence of EM fluctuations.
Fig. (1) shows the time evolution of the edge confinement time τconf, the energy associated

with the mean electrostatic potential Eφ̄ as well as the enery associated with electromagnetic
fluctuations Eψ̃ for different values of the αN parameter, ranging from αN = 0.01 to αN = 0.3.



3 TH/1-3Rb

Here, the edge confinement time and the energies are defined as

τconf =
1

Γtot

∫
V

p(r,θ,ϕ, t)dV Eφ̄(t) =
√∫

R

∣∣φ̄(r, t)
∣∣2 dr Eψ̃(t) =

√∫
V
|ψ̃(r,θ,ϕ, t)|2 dV(4)

where Γtot =
∫

V S(r)dV is the constant energy flux coming from the plasma core and V is the
simulated volume at the plasma edge. A strong impact of the αN parameter on the confinement
time is observed. In a statistically stationary state, the level of τcon f is lower by nearly 40%
in the case of the highest value of αN compared to the one with the lowest value of αN . The
level of magnetic fluctuations is found to increase with increasing αN (Fig. (1), right column).
However, as the parallel diffusivity is set to zero in these simulations (χ‖ = 0), the magnetic
perturbations do not contribute to the evolution of the pressure [i.e. ΓδB = 0 in Eq. (6) presented
below] and therefore the decrease of τconf with αN can not be attributed directly to the increase
of the magnetic fluctuations and a different mechanism has to be invoked. We therefore study
the energy associated with the mean electric potential, Eφ̄, which is linked via the ExB drift
to a mean poloidal rotation of the plasma. As can be seen from Fig. (1), middle column,
the level of Eφ̄ in the stationary state is decreasing with αN and therefore the mean plasma
rotation is decreasing. As this rotation typically has a stabilizing effect on the turbulence via a
shearing of convective cells, the decrease of Eφ̄ is expected to lead to a higher turbulence level
and therefore a lower confinement time. The competing mechanism for the generation of the
mean poloidal rotation can be studied by averaging poloidaly and toroidaly the equation for
the electrostatic potential, Eq. (1). The corresponding equation of the poloidal flow is :

∂t v̄θ = −∂r (TR +TM +TV )−〈Gp〉θϕ , (5)

where the notation <>θϕ stands for the average in the poloidal and toroidal directions; v̄θ =
〈vθ〉θϕ is the flow profile and ṽr,θ = vr,θ − v̄r,θ is the fluctuating part of the radial (respectively
poloidal) velocity, ψ̃ is the fluctuating part of the magnetic flux. The Reynolds stress TR =
〈ṽθṽr〉θϕ and the Maxwell tensor TM = 〈∂θψ̃∂rψ̃〉θϕ are represented by the first two terms of
Eq. (7), Tv, corresponds to the viscosity effects. Following the equation for the pressure profile,

∂t p̄ = −∂r (ΓConv +ΓColl +ΓδB)+δc 〈Gφ〉θϕ +S, (6)

the total energy flux is decomposed into three components : the convective flux Γconv =
〈p̃ṽr〉θϕ, the collisional damping Γcoll = −χ⊥∂r p̃ and the flux due to the parallel diffusivity
ΓδB = −χ‖

〈
∂θψ̃∇‖p

〉
θϕ.

To compare the relative importance of the stresses TR and TM in the transport dynamics, we

study the time average of the norm of each of these tensors, defined by < F 2 >t=
√

<
∫

R |F(r, t)|2 dr >t ,
The results are plotted in Fig. (2). Both, Maxwell tensor and Reynolds stress are found to in-
crease with αN . However, the ratio between < T 2

M >t and < T 2
R >t decreases with αN such that

for low values of αN , the Reynolds stress is dominant, and for αN ≥ 0.1, Reynolds and Maxwell
stresses have similar amplitudes. As the Reynolds stress is known to drive the poloidal flow
[Eq. 7], we conclude that the decrease of the poloidal flow energy with increasing αN is linked
to a competition between Reynolds and Maxwell stresses.

2.1 Self-similarity
One of the most efficient tools to study the scaling and self-similarity properties of turbu-

lence is the structure function [3]. The structure function of order q for a field u in a fully
developed turbulent state is defined as [3] Sq(u;r) = 〈|u(x+ r)−u(x)|q〉 , where r represents
a spatial separation and 〈...〉 is the ensemble average. The structure function Sq(u;τ) for the
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Figure 3: The structure functions Sq (q =0.5,1,2..8) versus S3 for the potential fluctuations
(Left panel). The ESS relative scaling exponents of the potential φ (Right panel).

temporal scales is defined similarly. We have properly calculated the temporal and the spa-
tial structure functions for the spatio-temporal fluctuations of the potential, pressure, mag-
netic field and vorticity, for various values of α. When the signal u is self-similar over some
range of spatial (temporal) scales, the structure function shows a power–law dependence on
the scale-size, i.e. the q–th order structure function is expected to scale as Sq ∝ rζq , where ζq

is the scaling exponent. This is theoretically the case in the inertial range of turbulence - the
range of wave numbers where the dominant process is the energy transfer and not the energy
injection or dissipation. However, in plasmas the different scaling regimes are not widely sep-
arated, which causes difficulties in the accurate estimate of the scaling exponents. The notion
though of Extended-Self-Similarity (ESS) [4] provides a successful method that allows to ex-
tend the structure function analysis into the dissipation and the large scale region. With the
ESS method, the dependence of the ratio ζq/ζ3 on q can numerically be determined. For the
case of RBM turbulence, we find a q/3 linear scaling for ζq/ζ3, which is in agreement with the
structure function exponent for the potential as it is experimentally found in edge turbulence
[5], indicating the mono-fractal scaling for the fluctuations.

2.2 The scaling between kurtosis and skewness
Several analyses have revealed the non-Gaussian statistics in the edge fluctuations of a num-

ber of devices. Here, we focus on the properties of the kurtosis and skewness and on the scal-
ing between these statistical quantities. For a centered random variable x̃ with variance σ2,
skewness is defined by the S ≡ 〈

x̃3
〉
/σ3 and the kurtosis by K ≡ F − 3 where the flatness is

F ≡ 〈
x̃4

〉
/σ4. Skewness is a measure of asymmetry of a PDF. If the left tail is heavier (more

pronounced) than the right tail, the PDF has negative skewness. If the reverse is true, it has
positive skewness. If the PDF is symmetric, it has zero skewness. Kurtosis (or more accu-
rately, ’excess kurtosis’) measures the excess probability (flatness) in the tails, where excess
is defined in relation to a Gaussian distribution. Utilizing the results obtained by the numer-
ical simulations of Resistive Ballooning Mode Turbulence we have calculated the values of
skewness and kurtosis of the timeseries of various fluctuating fields (e.g. potential, vorticity,
pressure etc.) for each grid point of the computational domain. For a significant number of
time series the values of Skewness and Kurtosis show a large deviation from their Gaussian
values. The K-S scatter plot is shown in Fig. (4), and it has clear a parabolic character. A
least-squares fit with a quadratic polynomial yields K = (1.476±0.006)S2− (0.496±0.002).
The uncertainty in the estimated coefficients is determined as the 95% confidence limits.
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Figure 4: Kurtosis vs. skewness com-
puted for∼ 3× 105 time-series and the fitted
quadratic polynomial.
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Figure 5: Time evolution of confinement time
(τcon f ) (a), turbulent flux (Γconv)(b) and flux due
to magnetic component (ΓδB)(c) at the center of
the barrier. Here, ωE = 3, Γtot = 18, µ = 20.
Time is represented in units of ms based on the
value of τint � 2µs. The relaxation frequency is
frelax � 3kHz.

These results shows a remarkable similarity with the experimental results presented recently
in a Letter by Labit et al. [6]. The authors [6] found a unique parabolic relation, K = (1.502±
0.015)S2 − (0.226± 0.019), between the skewness S and kurtosis K of about ten thousand
observed density fluctuation signals that are associated with drift-interchange turbulence over
a broad range of experimental conditions.
Parabolic relations of this kind have been found in different physical systems. In a recent re-
port [7], Krommes discussed the remarkable similarity in the K-S relation of Torpex density
fluctuations with the K-S relation of sea-surface temperature fluctuations, and suggested a gen-
eralized non-linear Langevin theory that includes linear wave propagation for its explanation.

3. Barrier relaxation oscillations and stabilization via static magnetic perturbation.
In the present model, a transport barrier is generated by an imposed shear flow (vimp). A

corresponding drive is added to the equation of the poloidal flow:

∂t v̄θ = −∂r

(
TR +TM +TV −〈Gp〉θϕ +µ(v̄θ − vimp)

)
, (7)

where the notation <>θφ stands for the average in the poloidal and toroidal directions; v̄θ =
〈vθ〉θϕ is the flow profile and ṽr,θ = vr,θ − v̄r,θ is the fluctuating part of the radial (respectively
poloidal) velocity, ψ̃ is the fluctuating part of the magnetic flux. The Reynolds stress TR =
〈ṽθṽr〉θϕ and the Maxwell tensor TM = 〈∂θψ̃∂rψ̃〉θϕ are represented by the first two terms of
Eq. (7). The r.h.s. of Eq. (7), Tv, corresponds to the viscosity effects while the last term
corresponds to a friction with the imposed shear flow defined by vimp. The latter is defined via
its shear ωE×B = ωE∂xvimp = ∂rEr/B0 = ωE/cosh(σx) where x = r− r0 and r0 corresponding
to the position where the shear is maximal. The shear amplitude is denoted by ωE and the
shear layer width σ is equal to 10% of the radial extension of the simulated zone. The velocity
profile has been chosen such that it correspond to an experimental profile [13].
Fig. (5) shows the evolution of the confinement time (reflecting the dynamics of the pressure
gradient), the normalized convective flux and the magnetic flux. Quasi-periodic relaxations are
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Figure 6: Energy for pressure fluctuations
(a), electrostatic (b) and electromagnetic
potentials (c) vs time (in ms) for a typi-
cal run with relaxation oscillations. In this
plot, the value of

√
α is 0.25. d) Spectra

in function of the poloidal mode number
before (solid line), during (diamond) and
after (points) a relaxation event.

observed and characterized by a growth of the
confinement time on a long time scale and fol-
lowed by a fast degradation. After these events,
the transport barrier builds up again. During the-
ses losses of confinement, the time evolution of
the convective flux Γconv and the magnetic flux
ΓδB reveal the appearance of flux peaks corre-
sponding to an increase of turbulent transport
through the barrier. The relaxation frequency can
be estimated, frelax � 0.006τ−1

int corresponding to
a frequency of the order of few kHz. This value
is in agreement with experimental measurements
of relaxation oscillations phenomena in tokamaks
such as Type III ELMs, with frequencies ranging
between 0.1 and 10kHz [14]. The barrier relax-
ation have been found to be robust and appear in a
wide range of parameter values [8]. The temporal
dynamics of the energy associated with pressure
fluctuations Ep̃, the electrostatic potential fluctu-
ations Eφ̃ as well as the electromagnetic pertur-
bations Eψ̃ are plotted in Fig. (6a-c). This demon-
strates that during the relaxation process, the mag-
netic activity is enhanced as it is the case in ex-
perimental observations of transport barrier relax-
ations [9, 10] where a simultaneous increase in
magnetic fluctuations is associated to these relax-
ation events.

Fig. (6d) shows the power spectra of EM fluctuations for three phases : during the quies-
cent phase, during a relaxation and after this event. The growth of a mode at the barrier
center is observed during a relaxation. This mode has a toroidal mode number n = 4 and a
poloidal mode number m = 10 which correspond to a resonant mode on the surface defined
by q = m/n = 10/4. Note that the mode which grows at the barrier center is the resonant
mode with the lowest toroidal and poloidal mode numbers in the present simulations. The fact
that, as in the ES case, a growth of a mode localized at the barrier center is observed suggests
that the main mechanism behind this relaxation phenomena is similar in both cases: a pertur-
bation at the barrier center exhibits a transitory growth due to a time delay in the shear flow
stabilization [11, 12]. With the definition ω′

E = m(ξbal/r0)ωE , the characteristic growth time

τD =
(
χ⊥ω′2

E /4
)−1/3

is of the order of 10τint ≈ 0.02ms in our simulations which is of the same
order of magnitude as the growth time of the flux peaks observed in Fig. (5b).
Over the last decade, the possibility of controlling ELMs has become plausible, as recent
experiments were carried out on DIII-D, on JET and on TEXTOR [15, 16, 17]. These exper-
imental studies obtained a qualitative control over the ELMs by imposing resonant magnetic
perturbations (RMPs) at the plasma edge. However, in order to get any quantitative result,
work has to be done in the understanding of the interplay between transport barrier relaxations
and RMPs. In this part, we investigate numerically the effects of static resonant magnetic per-
turbations (RMPs) on transport barrier relaxation oscillations using an electrostatic version of
the model (1,2), i.e. ∂tψ = 0 in (3). We use the geometry of the TEXTOR tokamak, and plasma
parameters close to those used in typical experiments on this machine Note that the parallel
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Figure 7: Effects of RMPs on the dynamics
of barrier relaxations: time traces of the ra-
dial heat flux in presence of an imposed mean
shear flow with shear rate ωE = 4, without (a)
RMP perturbation, with (b) ID = 1.5 kA.

Figure 8: Effects of RMP’s on the topology of
magnetic field lines : Poincare map for a per-
turbation current ID = 0.5kA. Three residual
magnetic island chains are observed, and a
stochastic layer in between the central island
chain and the one on the right.

gradient in (1,2) is ∇‖ = ∇‖0 +{ψRMP , ·}, where ∇‖0 is the component due to the unperturbed

magnetic field, {ψRMP, ·} = ∂ψRMP
∂x

∂
∂θ − ∂ψRMP

∂θ
∂
∂x denote the Poisson brackets and the mag-

netic flux due to the resonant magnetic perturbation is written as: ψRMP(x,θ,ϕ) ∼ ID ∑ψm(x)
cos(mθ−n0ϕ) where ψm(x) = sin(m−m0)

m−m0
exp(mcx) is the spectrum of the RMPs, m0 is the

central poloidal harmonic number, mc denotes the poloidal harmonic number of the RMP-
producing coils, n0 is the toroidal harmonic number. In the case studied here, we use n0 = 4,
with qx=0 = q0 = 3, so that the central poloidal harmonic number is m0 = 12. [18].

We propose the following model based on the balance of heat fluxes, to explain the behaviour
of the convective flux and pressure gradient in the presence of RMPs and a shearflow-induced
transport barrier. Taking into account RMPs, the pressure fluctuations should be further de-
composed into an equilibrium and a turbulent part: p̃ = p̃eq(x,θ,ϕ)+ p̃turb(x,θ,ϕ, t), and sim-
ilarly for the radial velocity harmonics ṽx. The energy balance (6) taken in a stationnary state
with ΓδB replaced by ΓRMP can then be written:

Γeq
conv +Γturb

conv +Γcoll +ΓRMP = Γtot (8)

where ΓRMP = χ‖〈
∂ψRMP

∂θ
∇‖p〉θ,ϕ represents the heat flux due to the magnetic flutter generated

by the RMPs, Γturb
conv = 〈p̃turbṽturb

x 〉θ,ϕ, Γeq
conv = 〈p̃eqṽeq

x 〉θ,ϕ are respectively the turbulent and
equilibrium convective heat flux, where ṽx denotes fluctuations of the radial velocity
Time series of the convective flux Γconv are presented, in presence of an imposed mean sheared
flow, for different values of the divertor current ID [Fig. 7]. In the reference case without
RMPs, we observe heat bursts (Fig. 7b) which are associated with relaxation oscillations of
the pressure profile and therefore also correspond to relaxations of the transport barrier. In the
case with RMPs, we observe that the heat bursts are mitigated by the RMPs, (Fig; 7b). The
amplitude of the heat bursts decreases and their frequency increases. It is found that the miti-
gation of the relaxation oscillations associated with the heat bursts is linked to a modification
of the transport barrier geometrical properties. This modification is due mainly to a change of
magnetic topology (Fig. 8), namely the presence of residual magnetic island chains and of a
stochastic layer both induced by RMPs. An erosion of the pressure gradient profile is observed
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at the surface of main resonance, e.g at the resonant surface q = m0/n0, where m0, n0 are
the principal poloidal wave-number and the toroidal wave-number of the RMPs, respectively.
This erosion is shown to be linked to the presence of residual magnetic island chains inducing
a stationary convective transport Γeq

conv of heat (and particles) in the radial direction. Far from
the principal resonance surface but inside the shear-layer, the pressure gradient modifications
depend if there is stochastic resonance overlap or not.

4. Conclusions.
In conclusion, turbulence simulations of a tokamak edge plasma have been realized focusing

on the impact of electromagnetic fluctuations. The role of the αN parameter has been analyzed
by a study of the different stresses present in the equation for the poloidal plasma flow. A
modification of the relative importance of Reynolds stress and Maxwell tensor depending on
the value of αN has been observed, leading to a decrease of the confinement time with in-
creasing αN . An increase of magnetic activity is observed during a relaxation event and the
frequency range is of the same order as the one observed in the case of type III edge localized
modes (ELMs) [14]. The physical mechanism underlying these relaxations remain the same
as in the electrostatic case. Therefore, magnetic fluctuations have negligible influence on the
relaxation process while the magnetic activity is enhanced by these relaxations. This reflects a
complete scenario which agrees with experimental observations that show a clear evidence of
the magnetic activity during the relaxations [5]. In the presence of RMPs, barrier relaxations
are found to be stabilized. An erosion of the pressure gradient profile is observed at the sur-
face of main resonance, e.g at the resonant surface q = m0/n0, where m0, n0 are the principal
poloidal wave-number and the toroidal wave-number of the RMPs, respectively. This erosion
is shown to be linked to the presence of residual magnetic island chains inducing a stationary
convective transport Γeq

conv of heat (and particles) in the radial direction. Far from the princi-
pal resonance surface but inside the shear-layer, the pressure gradient modifications depend if
there is stochastic resonance overlap or not.
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