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Abstract. In order to gain reliable predictions on turbulent fluxes in tokamak plasmas, physics based transport 
models have to be improved. On a confinement time scale, nonlinear gyrokinetic electromagnetic simulations for 
all species are still too costly in terms of computing time. On the other hand, interestingly, quasi-linear 
approximation seems to retain the relevant physics for fairly reproducing both experimental results [1, 2] and 
nonlinear gyrokinetic simulations [3, 4, 5, 6]. Quasi-linear fluxes are made of two parts, the quasi-linear weight 
and the saturated squared electrostatic potential. The first one is shown to follow well nonlinear predictions; the 
second one is based on both nonlinear simulations and turbulence measurements. The resulting quasi-linear 
fluxes are shown to agree with the nonlinear ones when varying various dimensionless parameters such as the 
ion to electron temperature ratio, the collisionality ν* and the temperature gradients, ranging from Ion 
Temperature Gradient (ITG) to Trapped Electron Modes (TEM) turbulence. 
 

1. Introduction 
 

After more than 40 years from the first pioneering papers [7,8], quasi-linear theory 
remains still nowadays an open subject of research that can provide a powerful instrument for 
plasma physics understanding. Reviews can be found for example in [9,10,11,12]. Even if 
most part of the theoretical efforts has been applied to 1D plasma turbulence, several quasi-
linear transport models have been proposed for the tokamak relevant 3D drift wave 
turbulence, providing feasible and commonly used predictive tools among which GLF23 [2], 
TGLF [13, 14], IFS-PPPL [1], MMM95 [15], Weiland model [16], QuaLiKiz [17]. Despite 
the apparently crude approximations adopted, the quasi-linear theory has revealed for a 
relevant number of cases an interestingly good agreement with both experimental results 
[1][2] and nonlinear gyrokinetic simulations [3][4][13][14][5][6].  
Validating quasi-linear transport models requires studying carefully two distinct points. The 
first one is to improve and test the arbitrary choices made to characterize the fluctuating 
electrostatic potential in terms of wave number (k) and frequency spectra and saturation level. 
The second one consists in checking if approximating a linear response of the transported 
quantities (particles and energy) to the fluctuating potential is realistic. Clarifying these two 
aspects requires intensive comparisons with nonlinear simulations and fluctuation 
measurements. This is the core of the work presented here.  

The validity of the quasi-linear approach is tested against nonlinear gyrokinetic 
simulations, using the Eulerian code GYRO [18] and the semi-Lagrangian code GYSELA 
[19]. The frequency and wave vector spectra obtained by reflectometry and laser 
backscattering measurements in Tore Supra are confronted to GYRO/GYSELA simulations: 
the choices for the saturated electrostatic potential are based on this confrontation. As in [6] 
for pure TEM turbulence, a good agreement of the de-phasing between the potential and the 
transported quantities, i.e. particles, ion and electron energy, is observed for coupled ITG-
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TEM turbulence between quasi-linear (on the most unstable mode only) and nonlinear 
regimes. On the other hand, contrarily to the observation made in [5] for ETG turbulence, the 
quasi-linear weights (amplitude and phase) for various ITG-TEM cases are affected by a 
slight, but constant, over prediction with respect to the nonlinear values.  
Finally, the quasi-linear fluxes (product of the weight with the fluctuating potential) given by 
QuaLikiz [17] are compared to the nonlinear GYRO fluxes while varying various 
dimensionless parameters such as R/LT (temperature gradient length), Ti/Te and collisionality 
ν*. Interestingly, the ratios between ion energy flux, electron energy flux and particle flux for 
quasi-linear and nonlinear simulations are shown to agree well for coupled ITG-TEM 
turbulence. 
 

2. Improved quasi-linear transport model 
 
The general approach chosen for this new quasi-linear model, QuaLiKiz, is briefly recalled 
[17]. The hypotheses underlying quasi-linear theory are reviewed, pointing out the presence 
of two distinct ways of accounting for broadenings around the resonances. Also, the 
fluctuating electrostatic potential dependence in k has been modified in the light of nonlinear 
simulation results. 
 
2.1 The model 
 
The quasi-linear gyrokinetic expression of the turbulent fluxes results from the time average 
of the nonlinear Vlasov equation over a time τ larger than the characteristic time of the 
fluctuations γ/1  and smaller than the equilibrium evolution time 0T . Moreover, the 

fluctuating distribution function f
~

 linearly responds to the fluctuating potentials H
~

 through 
the Vlasov equation. In the model presented here the linearized Vlasov equation is computed 
by Kinezero [Bou02] using the ballooning representation. Kinezero accounts for electrostatic 
fluctuations only. Two ion species and electrons are taken into account in both their trapped 
and passing domains. It is an eigenvalue code that computes all the unstable modes.  
Hence, the quasi-linear formulation leads to the following expressions for the particle and 
energy fluxes for each species s (resp. sΓ and EsQ ) [17]:  
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The sum over kω (where ωk+iγk are the complex eigenvalues of the linear dispersion relation) 

is the sum over all the unstable modes. The integrands are: ss TVm /
2
1 2








=ξ , 
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/0, VmrB sθµλ . ( ) ( )0,/, rBrBb θ= , with sm  the mass, V the velocity, µ  the 

adiabatic invariant, B the magnetic field, ( )ϕθ ,,r  the radial, poloidal and toroidal coordinates.  

The frequencies are: 
BRe

T
kn

s

s
Ds θω −= , ( ) ( ) ////2 Vkfb

BRe

T
kn

s

s
s +−−=Ω λλξθ , with ( )λf  a 

function of λ  depending on the magnetic geometry. sn is the density, sT the temperature, sP  

the pressure, TsV the thermal velocity, q  the safety factor,s the magnetic shear, α  the MHD 

parameter included in Kinezero [20] (which differs for trapped and passing particles), 

ξθ R

V

q

s
wkVk Ts±≈//// , n  the toroidal wave number and 

r

nq
k =θ  the poloidal wave vector. 

The most delicate part in estimating the energy and particle fluxes using the quasi-linear 
theory is due to the fact that the model is not self-consistent (there is no back-reaction of the 
perturbed quantities on the fluctuating potential). The linearized gyrokinetic equation does not 
provide any information on the saturation of the fluctuating electrostatic potential in terms of 

its amplitude 
knωωφ~  or on its spectral shape versus the wave number n and the frequency ω. 

Our choices on both spectra are discussed in the following subsections.  
 
 2.2 Resonance broadening and frequency spectra of the fluctuating potential 
 
Adding a non negligible finite +i0+=+iν in the resonance terms of Eq. 1-2 does not simply 
fulfill causality; it is also linked to intrinsic nonlinear effects leading to irreversibility through 
mixing of the particles orbits in the phase space. In other words, this is the key point for 
passing from a resonance localized quasi-linear theory to a renormalized quasi-linear theory. 
Historically, this has been at the origin of the so called resonance broadening theory (RBT), 
firstly initiated by Dupree in [21] and followed by several other works, leading also to more 
elaborate theories like the direct interaction approximation (DIA) [22,23,24,25]. In the case of 

finite ν, the term ( ) 








+Ω− νλξω in s ,
1

Im  is a Lorentzian of width ν, in contrast with the 

singular resonance localized expression found for ν→0. Also, it is to be noted that in the limit 
ν→0 the particle fluxes are not ambipolar, hence it is mandatory to introduce a finite ν value. 
In principle, two kinds of broadening can exist in the quasi-linear fluxes expressed by Eq. 1-2. 
The first one actually coincides with the just mentioned RBT. The second one is instead 

related to an intrinsic ω-spectral shape of the squared fluctuating potential 
knωωφ~ 2. Here we 

refer to this second broadening mechanism as frequency broadening. Assuming for example 
that the frequency spectral shape is described by a function ( )ωωk

S  centered in ωk and with a 

non-zero width w, computing the quasi-linear particle flux according to Eq.1 should account 
for both broadenings, giving: 
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To our knowledge, most models assume more or less implicitly that for each wave number k a 
well defined frequency ω exists such that ω→ωk. In other words this choice corresponds to: 
(4) ( ) ( )kk

S ωωδωω −=  

On the contrary, QuaLiKiz explicitly assumes a Lorentzian shape for the frequency 
broadening (Eq. 7 of [17]) in the following way: 
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with kw γ= , the growth rate of the considered unstable mode. This choice is justified by 

several experimental measurements with light scattering diagnostics, showing that the 
frequency spectrum of the density fluctuations presents a non negligible broadening, either 
Lorentzian or Gaussian, around the frequency of the unstable mode [26, 27, 28, 29, 30].  
Note that QuaLiKiz formulation considering no nonlinear resonance broadening 
( +→ 0ν ) coupled to the choice (5) is completely equivalent to the more familiar quasi-linear 
theory based on RBT where ν=γk and ( ) ( )kk

S ωωδωω −= . Indeed: 
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In other words the QuaLiKiz transport model correctly accounts for both the resonant and 
non-resonant contributions to the quasi-linear fluxes, as done by the other models like GLF23, 
TGLF, Weiland model, IFS-PPPL, MMM95. Nevertheless the choices on the shape and the 
width of the broadening are still arbitrary. We have started comparing experimental 
turbulence measurements by Doppler reflectometer and nonlinear gyrokinetic simulations; 
indeed the frequency width increases as kγ  increases, but some extra dependence in k has to 

be introduced. 
 
2.3 Saturation rule and k spectrum of the fluctuating potential 
 

The saturation level of 
2~

knωωφ  at kmax is chosen such that the effective diffusivity, effD , 

follows the mixing length rule:  
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The fluxes are a sum over all the unstable modes; each mode is weighted by a saturation rule 
that uses its corresponding growth rate and mode structure. This is an arguable point; 
nevertheless QuaLiKiz fluxes computed in that way are shown to agree well with nonlinear 
GYRO simulations for mixed ITG-TEM turbulence for a large number of cases, as detailed in 
section 4.  

The choice for 2
⊥k  is based on both experimental observations and nonlinear simulation 

results. It should lead to a maximum 
2~

ωφn around 2.0≈ik ρθ , i.e. lower than the linear 

stability prediction (typically 4.0≈ik ρθ ), as observed for example with BES [31] and in 

nonlinear simulations. It should also depend on q as observed in nonlinear simulations [32, 

33]. A pertinent choice for 2
⊥k combining these 2 aspects has been proposed by [3, 32, 34] 

and recently discussed in [6]. Adding the impact of the MHD parameter α on the curvature 
drift to the expression proposed by [3, 32, 34], one obtains for strongly ballooned modes:  
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Concerning the k spectral shape, in the previous version of QuaLiKiz we based our choice on 
turbulence measurements performed by light scattering experiments [35], showing that the 

density fluctuations 
2

2
~~

k
k

n

n φ≈  wave vector spectrum scales as ike ρ4− above kρi=0.5. In order 

to increase the confidence in this critical choice, nonlinear GYRO simulation results are being 
compared with both Doppler and fast-sweeping reflectometers, the first results are  
encouraging [36]. Nonlinear local gyrokinetic simulations with kinetic electrons and 
collisions have been performed with GYRO, showing the maximum of the spectrum at 
kmaxρs≈0.2, down-shifted with respect to the maximum of the linear γk spectrum kθ,lin-

maxρs≈0.4. A power law of the type kθρs
-x is generally able to fit very well both the potential 

and the density fluctuations spectrum for kθ>kθ,nl-max. A slope 3<x<3.5 has been typically 
observed (see Fig. 1), reproducing reasonably well the experimental turbulence measurements 
in the medium-low kθ range from Doppler reflectometry available on Tore-Supra [30]. On the 
other hand, the transition towards x≈6 observed by the measurements for smaller spatial 
scales corresponding to kθρs>1.0, has not been reproduced by the GYRO simulations. 

Hence, we now assume, from 0 to kmax:  
32~

sn k ρφ θω ∝ and from kmax to infinity: 

32~ −∝ sn k ρφ θω . Moreover, the experimentally observed asymmetry in kθ and kr spectra has 

been resolved as being due to Doppler reflectometer instrumental integration domain [36], 
thus supporting our implicit choice of isotropic k spectra. 
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Fig. 1: Flux-surface averaged δφ power spectrum in kr (blue) and kθ (red), computed  by GYRO 

simulation using Tore Supra parameters (r/a=0.5, R/LTi=8.0, R/LTe=6.5, R/Ln=2.5) 
 

3. Testing the quasi-linear weights versus nonlinear simulations 
 
A rigorous validation of the quasi-linear approach has to be done apart from any hypothesis 
on the saturation spectrum. For this purpose, the following transport weight wk has been 
defined, such that this quantity can be calculated in the full nonlinear as well in the quasi-
linear regimes, for each wave number k and for each transport channel (particle and 
ion/electron energy): 
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These quasi-linear weights can be calculated from an initial value code, but in the case of an 
eigenvalue approach, the fluxes expressed in Eq. 1-2 can not be unequivocally divided by 

2~
knωωφ . Therefore, the discussion on the transport weights is here limited to the most unstable 

mode; no simple tool allowing testing the validity of the quasi-linear approach for the 
subdominant modes has been yet developed. 
 
The ratio between the quasi-linear and the nonlinear transport weights has been studied by 
means of both local (GYRO) and global (GYSELA) gyrokinetic simulations of pure ITG 
turbulence (i.e. with adiabatic electrons). Fig. 2 refers to the kθ spectral structure of this ratio, 
where scales up to kθρs=1.48 have been resolved (results corresponding to kθρs>1.0 are 
omitted for GYSELA since a simplified gyro-averaging operator is applied in these range). 
Both the local and global simulations agree in identifying a systematic over-prediction of the 
linear transport with respect to the nonlinear regime, with a ratio around 1.5. Moreover, this 
linear/nonlinear ratio stays reasonably constant when changing the plasma parameters, 
especially at low kθ scales, where it impacts most the transport level. The reason of this over 
prediction remains to be assessed. 

 
Fig. 2: Ratio of the quasi-linear and nonlinear transport weights defined in Eq. 10 versus kθρs from 
local GYRO and global GYSELA simulations (adiabatic electrons, r/a=0.4, R/LTi=8.28, ρ*=1/256)  

 
Since the transport weight can be calculated as the real part of a complex quantity, both 
amplitude and phase can be defined for nonlinear and quasi-linear regimes. Using the initial 
value code GYRO, the probability density function (PDF) of the de-phasing between the 
transported quantities (δn, δEi, δEe) and the fluctuating potential δφ∗ from each k-mode has 
been calculated in the nonlinear saturation regime and compared to the linear de-phasing from 
the most unstable mode. Fig. 3 shows a very good agreement between the nonlinear and the 
linear phases in the plane θ=0, where the interchange instability is supposed to be dominant. 
This test of validity of the quasi-linear approach, introduced by [6, 32] for pure TEM 
turbulence, has been in this case successfully extended to coupled ITG-TEM turbulence. 
Nevertheless, when the plasma parameters are close to ITG/TEM transition (Fig. 3 d, e and f), 
the quasi-linear phase coming from the most unstable mode fails on predicting the particle 
transport (Fig 3d), whereas very interestingly the linear de-phasing for the energy fluxes 
remain reasonably close to the nonlinear values (Fig 3e and 3f).  
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Cross-phase electron energy vs potential
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Cross-phase ion energy vs potential
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Cross-phase electron energy vs potential
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Fig. 3: PDF of the nonlinear cross-phases (contour plot) and the linear cross-phase for the most 
unstable mode (white line) from local GYRO simulation with kinetic electrons (r/a=0.5, ρ*=1/400); 

the first row(a,b and c) refers to R/LTi=R/LTe=9.0, R/Ln=3.0 (GA standard case), while the second one 
(d,e and f) assumes R/LTi=6.0, R/LTe=9.0, R/Ln=3.0  

 
In the case of pure ITG turbulence, the nonlinear phase between δpi and δvExB has been 
directly studied through global nonlinear gyrokinetic simulations with GYSELA, and 
compared to the phase between δpi and δφ*  given by local GYRO simulations (Fig. 4). The 
two codes predict coherent total ion energy fluxes; nevertheless, phase shifts more peaked 
towards low kθ scales are observed in the global GYSELA simulations with respect to the 
local ones by GYRO. 

 
Fig. 4: Local GYRO versus global GYSELA simulation of pure ITG turbulence: 

sin(<∆Φ(δpi−δφ)>) for GYRO and cos(<∆Φ(δpi-δvExB>��) for GYSELA versus kθρs are plotted 
 

4. Parametric impact on quasilinear fluxes, comparison with nonlinear predictions  
 
In section 2, we have discussed the choices made for the saturated electrostatic potential in the 
present version of QuaLiKiz, based on nonlinear simulations and experimental measurements. 
In section 3, we have shown that the major approximation of the quasi-linear theory, namely 
assuming a linear response of the fluctuating transported quantities, is actually reasonable in a 
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wide number of cases. In this fourth part, logically, we test the whole quasi-linear fluxes 
computed by the actual version of QuaLiKiz versus the nonlinear GYRO ion and electron 
energy fluxes and particle fluxes for various parameter scans.  
In each case only one renormalisation factor, C0, has been used in order to get the best fit to 
the nonlinear fluxes. In the first scan, both the ion and electron temperature gradients are 
simultaneously varied (Fig. 5). A second example is a direct application to an experimental 
collisionality (ν*) scan realised on Tore Supra plasmas [37]. The ν* scaling is particularly 
challenging for quasi-linear models, since the nonlinear collisional damping of zonal flows is 
not captured, while linearly a transport decrease is expected, driven by the collisional 
quenching of TEM. Fig. 6 demonstrates that, for experimental values of νei, QuaLiKiz is able 
to well reproduce the nonlinear diffusivities predicted by comprehensive GYRO simulations, 
performed with pitch-angle scattering operators on both electrons and ions. The coupled 
dynamics between ion and electron non-adiabatic responses is crucial for both GYRO and 
QuaLiKiz, resulting in a slight decrease of transport on all the channels driven by higher 
collisionality. In particular, the particle flux reverses direction as ν* increases as already 
detailed in [34]. For the two finite ν* points, corresponding to two Tore Supra discharges, the 
decrease is within the experimental error bars of the power balance χeff [37]. The third scan 
(Fig. 7) illustrates a Ti/Te scan, using DIII-D-like parameters as described in [38]. The ion 
heat flux decreases faster than the electron one when increasing Ti/Te, as observed in [38]. 
Some discrepancies between the quasi-linear fluxes by QuaLiKiz and the nonlinear results by 
GYRO, mostly on the ion energy flux, could be ascribed to the role of zonal flows, whose 
amplitude variations are expected to strongly affect the transport level especially for this ITG 
dominated case. This issue is presently under investigation. 
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Fig. 5: Ion energy (red), electron energy (blue) 
and particle (green) effective diffusivities from 
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5. Discussion 
 
Despite the crude estimates needed on the saturated electrostatic potential, assuming a linear 
response of the transported quantities to the fluctuating potential has been proven to work 
rather well for a large number of cases. Moreover, interestingly, when coupling the choices 
for the saturated electrostatic potential with the quasi-linear response, we have shown to find 
quasi-linear fluxes agreeing well with nonlinear predictions for energy in the ion and electron 
channels, as well as for particle fluxes for a wide range of parameters. Nevertheless, a number 
of challenging issues remain to be tackled. i) The quasi-linear approach is known to fail in a 
number of cases: far from the threshold, onset of zonal flows, etc. Hence, the domain in which 
it can be applied should be better understood. ii) The choices for the saturated electrostatic 
potential deserve more comparisons with nonlinear simulations and experimental 
measurements. In Tore Supra, we are presently comparing density fluctuations k and 
frequency spectra from Doppler and fast-sweeping measurements versus GYRO and 
GYSELA simulations  iii) Finally, only the integration of QuaLiKiz in a transport code such 
as CRONOS [39] will allow testing in situ the predictive capabilities of such an approach. 
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