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Abstract: In the reversed field pinch ions are heated anomalously relative to collisional energy exchange with 
Ohmically heated electrons.  The process channels electron energy to ions in a way that is still not understood.  
Recent observations suggest that impurities are preferentially heated. A theory for ion heating via impurity ion-
cyclotron-resonant damping of the turbulent energy cascaded from unstable global tearing modes is presented. 
The theory treats the magnetic turbulence as an Alfvén wave cascade and calculates the rate of damping to 
impurity ions via cyclotron resonances. The transient temperature rise in sawtooth crashes is modeled from a 0-
D transport model that accounts for the resonant cyclotron heating, anomalous heat losses, and collisional 
equipartition between impurities, bulk ions, electrons, and parallel and perpendicular temperatures. The larger 
fluctuation level at lower impurity cyclotron frequencies and the multiplicity of impurity resonances lead to 
heating rates that are consistent with experiment.  Dependencies on temperature, density, and magnetic 
fluctuation level are described. The magnetic fluctuation spectrum is modeled for dissipation associated with 
viscosity, resistivity and cyclotron resonances. When Visco-resistive dissipation range spectra derived for MHD 
turbulence are fit to the MST spectrum, the viscosity and resistivity inferred are much larger than the 
experimental values. Analysis of asymmetry in the toroidal wavenumber spectrum suggests that additional 
dissipation is coming from the cyclotron resonance with impurity ions. 

1. Introduction 

The anomalous heating of ions observed in the reversed field pinch (RFP) channels magnetic 
energy associated with electrons to the ion distribution. Because the process is anomalous, 
the benefits of channeling energy to the ions are offset by electron heat losses. While widely 
observed [1]-[4], an assessment of tradeoffs and efficiencies has been hindered by lack of a 
confirmed viable mechanism. A variety of mechanisms have been proposed [5]-[8]. Some 
have difficulty explaining observations [5]-[6], while for others, comparison with experiment 
has been inconclusive [7]-[8]. Recent observations indicate that impurity ions play a 
significant role in anomalous ion heating. During a sawtooth crash impurity temperatures Tα 
rise by hundreds of eV to values that satisfy Tα > Ti > Te where Ti is the temperature of the 
main gas ions, and Te is the temperature of the electrons. The rates of heating satisfy a similar 
inequality, ΔTα/Δt > ΔTi/Δt > ΔTe/Δt. These observations are similar in many respects to 
anomalous ion heating in the solar wind and solar corona [9]. The prominence of the role 
played by impurities, and the widely held view that coronal heating is related to magnetic 
turbulence, leads us to formulate a theory for ion heating via impurity ion-cyclotron-resonant 
damping of the turbulent energy cascaded from unstable global tearing modes. The theory 
extends previous work that treated the fluctuations of the cascade as Alfvén waves [8], but 
ignored impurities.  The theory is based on solution of the plasma dielectric and is shown to 
yield ion-heating rates that are consistent with experimental observation.   

To enable experimental assessment we calculate other observable consequences, including 
the scaling of heating rates with density, temperature, and magnetic fluctuation level; 
impurity vs. bulk-ion heating; and collisional effects like temperature isotropization. To 
study heating rates and collisional effects we introduce a 0-D transport model that includes 
the wave damping rates on cyclotron resonant impurities, as calculated from the plasma 
dielectric, loss rates due to turbulent transport, and collisional transfer among impurities, 
main gas ions, electrons, and perpendicular and parallel temperatures. Taking advantage of 
new magnetic fluctuation measurements suggesting exponential falloff of fluctuation energy 
with toroidal wavenumber, we model dissipation range spectra in MHD turbulence, 
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considering dissipation both from collisional processes and impurity-cyclotron-resonance 
damping. MHD dissipation range spectra have not been derived previously, despite a number 
of measurements in magnetic turbulence suggesting a transition to a dissipation range [10]-
[12]. We derive dissipation range spectra for MHD, corresponding to both aligned [13] and 
unaligned [14] turbulence, and for magnetic Prandtl numbers Pm≤1, extending a closure 
technique from fluid dynamics [15] to magnetic turbulence.   

2.  Energy Flow from Electron to Ion Channels   

The strongest increases in ion temperature observed in MST occur as part of a sawtooth 
crash. Hence we consider ion heating during sawtooth crashes. The crash intensifies the m = 
1 spectrum, but the m = 0 resonant surface must be present in the plasma. Heating is not 
localized to that radius, suggesting involvement of a mode-coupling process with m = 0. The 
observations that Tα > Ti > Te and ΔTα/Δt > ΔTi/Δt > ΔTe/Δt indicate that the process 
preferentially heats impurity ions.  These features are consistent with a turbulent cascade 
involving m = 1 fluctuations that transfer energy to higher toroidal wavenumber n through 
coupling to m = 0.  Energy is dissipated to impurity ions by cyclotron resonance. Impurities 
are resonant at lower frequencies than bulk ions, allowing the greater fluctuation energy at 
low frequency to drive stronger heating. From the unstable Ohmic current distribution, 
electron-channel energy flows to the ion channel with quantifiable branching ratios. A 
portion of the fluctuation energy, εinv, is carried to global scales by an inverse helicity 
cascade that reinforces the Taylor state. The remainder, εfor, cascades to small scales where it 
is subject to resonant absorption.  The branching ratio is  

€ 

ε fow
εinv

= F(k)Vanom

VSp

 (1) 

where Vanom and VSp are anomalous and classical (Spitzer) loop voltages, and F(k) is an 
order-unity function of the equilibrium field configuration. The ratio has a value near 0.7. 

3. Cyclotron-Resonance Damping 

In MST the fluctuations that participate in the toroidal mode number cascade are bound 
eigenmodes in the strongly sheared equilibrium magnetic field. Their radial structures are 
localized by shear about the rational surfaces, where k|| = 0, but extend beyond to k|| ≠ 0. In 
the outer half of the plasma, magnetic shear makes k|| primarily a function of the toroidal 
mode number n, even though the field is mostly poloidal. Hence, is reasonable to think of the 
fluctuations, which are ideal away from rational surfaces, as Alfvén waves with ω = k||VA, 
even though the cascade couples toroidal mode numbers. This picture greatly simplifies the 
task of calculating cyclotron resonant damping: the limit of the plasma dispersion relation 
with Alfvén-like dispersion can be evaluated, extracting the imaginary part to recover 
dissipation. The more realistic alternative, to calculate the cyclotron-resonant dissipation of 
Δ′-negative, nonlinearly excited, shear-localized, small-scale, diamagnetic tearing modes is 
very difficult, even as a computational problem. 

Alfvénic dispersion arises from the K11 component of the dielectric tensor [16]. This 
component dominates wave dispersion when k⊥ > k|| decouples the compressible fast and slow 
modes. With B0 in the z direction and k in the x-z plane [k = (sinθ, 0, cosθ)], K11 is given by  
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where zs
α = (ω−sΩα)/√2k||v||α, s is an integer, ωpα is the plasma frequency, Ωα is the cyclotron 

frequency, α labels impurity species, and k = k||. There is no mean flow, and Is(λ) is a modi-
fied Bessel function of argument λ=k⊥2ρ2, where ρ is the proton gyroradius, λα=k⊥2ρ2, and 
Z(z) = (1/√π)∫dt exp(–t2)/(t–z) is the plasma dispersion function. Equation (2) simplifies to  

€ 

X 3 = Yω pHαPα Z(zα )exp(−λa )
s2

λαs=−∞

∞

∑
α

∑ Is (3) 

where X = ck/ΩH, Y = ω/ΩH, zα = Pα(Y–sηα)/X, ηα is the impurity charge-to-mass ratio, Pα = 
c/√2v||α, and ωpHα = ωpα

2/ΩH
2.   

Solutions of this expression, obtained numerically, are displayed in Fig. 1. The real part of 
the frequency [part (a)], indicated by the heavy solid line, is seen to asymptote to ω = kVA 
(dotted line) for small k. The thin solid line is the solution of c2k2/ωr

2 = ∑αωpα
2/(Ωα

2–ωr
2), a 

common approximation. The dashed/dotted line is a solution of Eq. (3) with the summation 
over s truncated to a single value s = 1. Solutions with a single value of s asymptote to Ωα for 
large k, whereas the pairings s = ±1, ±2, etc., force ωr to zero as k →∞. The damping rate γi is 
small for low k where ωr = kVA. However, it increases as ωr approaches Ωα (resonance), and 
increases further in the non resonant region where k ≥ kcrit and ωr = 0.  

 
FIG. 1. Real and imaginary parts of wave frequency for damped Alfvén-like waves. 

The analytic expression given by the thin solid line in Fig. 1 can be used to calculate the 
branching ratio for cascade energy deposited in electrons via Landau damping versus an 
impurity species via cyclotron resonance. The analytic approximation yields a damping rate 
expression, from which the branching ratio is calculated to be εelec/εα = (meTα/mαΤε)

1/2kλD
2 

<<1. The rate at which fluctuation energy is converted to impurity heat via cyclotron 
absorption is given by ndT⊥/dt = Q⊥ = (πa2)-1(2πR)-1∫ 

kcrit γi 4πk2dk[b2(k0)/2µ0] (k/k0)–δ, where a 
and R are the minor and major radii of the torus, and b2(k0)(k/k0)–δ is the magnetic fluctuation 
spectrum (we will take δ = 5/3). This rate is dominated by the larger k values where ωr 
deviates from ωr = kVA. Because we model cascade fluctuations as propagating modes (ωr ≠ 
0), we cut off the sum over k in the heating expression at kcrit. The rates of impurity and bulk-
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ion cyclotron heating calculated from the above expressions represent a source in impurity 
and bulk ion temperature evolution. This source is offset by losses and gains due to 
collisional equilibration and losses from energy transport out of the system. These sources 
and sinks form a transport model, whose solution yields impurity and ion temperatures. The 
transport model solutions, given below, show that there is significant bulk ion heating by 
collisional transfer from impurities. 

4.  Impurity Cyclotron Resonance Heating and Consequences  

The transport model we employ is a simple 0-D model. We use it to describe the response of 
ion temperatures to the rise of fluctuation energy in a sawtooth crash. The transport equations 
include ion-ion collisional equilibration among impurity species and between impurities and 
bulk ions, electron-ion equilibration, cyclotron damping of fluctuation energy in a prescribed 
spectrum as given above, and thermal transport via anomalous processes. With appropriate 
modifications it is also possible to allow for anisotropic temperature and account for 
anisotropy in the heating rate. Figure 2 shows solutions of the transport model with 
anisotropic temperature for six regular sawtooth cycles for a carbon impurity species and 
deuterium bulk ions. The carbon impurity has a large temperature rise. The other 
temperatures are dependent on collisional equipartition and are smaller. The parallel 
temperature rise lags in time. Impurity heating rates vary approximately linearly with the 
magnetic fluctuation level. For the magnetic fluctuation levels of RFPs the heating is 
significant; for tokamaks it is negligible. Impurity heating rates decrease with increasing 
temperature. For reactor conditions the rates are more than an order of magnitude lower.  
Impurity heating rates also increase with decreasing density. In Fig. 2 the deuterium density 
is 5×1012

 cm-3, and the carbon density 0.1 of the deuterium density. The magnetic fluctuation 
level is consistent with that of experiment over a sawtooth cycle. If the density is increased to 
1013

 cm-3 the carbon temperature rise is approximately 100 eV from 50 eV to 150 eV. These 
values are in experimental ranges. 

 
FIG. 2. Responses of impurity [C] and bulk [D] ion temperatures to a sawtooth 
oscillation in which the fluctuation energy periodically rises and falls. Energy is 
transferred collisionally from perpendicular to parallel temperature, and from the 
impurity species to the bulk ion species.  

5. Effect on Spectrum I: Visco-resistive Dissipation Range in MHD Turbulence   

The significant energy transfer to ions from the magnetic fluctuation spectrum should affect 
the spectrum shape, imposing a dissipation range. The same statement should also hold for 
the spectrum of magnetic turbulence in the solar corona and solar wind, provided the energy 
for coronal heating is extracted from the fluctuation spectrum. However spectra in MST and 
in the solar wind and solar corona have historically been interpreted as power law spectra, 
even when the fall off becomes steeper at higher wavenumber. For example, the spectrum in 
MST has typically been interpreted as a dual-range power law, with spectral indices near –
5/3 and –4 in low and high wavenumber ranges. Likewise, solar wind spectra, even in ranges 
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described as dissipative, are fit with increasingly steep power law exponents [12]. In the case 
of MST, it appears that an exponential falloff provides a better fit to the spectrum [17]. 
Exponential spectra for dissipation range turbulence are a staple in Navier-Stokes turbulence, 
with a number of similar exponential laws having been derived [18]. Surprisingly, it does not 
appear that dissipation range spectra have been derived for MHD. We address this situation, 
first deriving dissipation range spectra for viscous and resistive dissipation, and then 
considering dissipation by cyclotron-resonance absorption. 

For MST, the magnetic Prandtl number Pm is close to unity, hence, we examine the 
dissipation range for Pm=1. Using Elsässer variables, the MHD equations can be written as 
  

€ 

∂Z± /∂t + Z

⋅ ∇Z± = −∇(p + B2 /2) +η∇2Z± , where 

€ 

Z± = v ± B, and η is the coefficient of 
dissipation (viscous and resistive). In the inertial range the nonlinearities transfer energy 
spectrally to higher wavenumber with essentially no loss of energy. In the dissipative range, 
the nonlinearities continue to transfer energy spectrally, but viscous and resistive energy 
disspation rates exceed the nonlinear rates of energy transfer. As a result, energy available 
for spectral transfer is attenuated as it progresses to successively smaller scales. This is 
expressed by  

€ 

−2ηE±k
2 =

dT±

dk
,  (4) 

where E±(k) = ∫Z±
2exp[ik⋅x]d3x is the spectral energy density and 

  

€ 

T±(k) = Z±
2Z

kΘk  is the 

spectral energy transfer rate. In the last expression, Θk is the alignment factor.  If Z+ and Z– 
are perpendicular, Θk = 1. This orientation maximizes the nonlinearity. In this case, the 
inertial range spectrum, obtained from ε = T±(k), is the Goldreich-Sridhar spectrum E±(k) = 
ε2/3k-5/3 [14]. In this situation the fields are said to be unaligned.  It is postulated that when 
there is a strong mean field the fields become partially aligned, resulting in Θk < 1 [13].  
When Θk < 1 the nonlinearity is partially depleted and spectral transfer is weaker. If Θk is 
proportional to k–1/4 the reduction recovers the inertial range spectrum originally proposed by 
Iroshnikov and Kraichnan (IK) [19]-[20], E±(k) = ε1/2 VA

1/2 k-3/2, where VA = B0/(4πρ)1/2.  
Unlike IK the fluctuations in aligned turbulence are anisotropic. Not only are they stretched 
along the field line, as is also the case when Θk = 1, but they are oblate in the plane 
perpendicular to the mean field. The oblate shape creates the partial alignment responsible 
for depleting the nonlinearity. The postulated alignment explains numerical simulations that 
reproduce the IK spectrum when there is a strong mean field [21]. Alignment has recently 
been observed directly in simulations [22]. 

To obtain dissipation range spectra it is necessary to close the expression for the spectral 
energy transfer rate, 

  

€ 

T±(k) = Z±
2Z

kΘk , so that it is expressed in terms of E±. Substitution into 

Eq. (4) then yields a differential equation that can be solved for the spectrum. A closure 
procedure given by Tennekes and Lumley (TL) for Navier-Stokes turbulence [15] is 
adaptable to MHD for magnetic Prandtl numbers Pm of unity or lower [17]. The closure 
results in MHD dissipation range spectra that are physically meaningful because: 1) 
physically meaningful Kolmogorov wavenumbers, corresponding to the scale at which the 
inertial and dissipative forces balance, are recovered; 2) the spectra asymptote to MHD 
inertial range spectra for wavenumbers that are smaller than the Kolmogorov wavenumber; 
and 3) the closure can accommodate both aligned and unaligned turbulence while still 
satisfying the first two conditions. The last condition suggests that the filament-like 
structures of aligned turbulence and the sheet-like structures of unaligned turbulence can 
both carry into the dissipation range as dissipative structures. The TL procedure also handles 
turbulence with Pm < 1, yielding distinct spectra for the magnetic and fluid energies that 
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satisfy the first two conditions. For Pm > 1 the transfer rates that govern the dissimilar 
spectra for magnetic field and flow are represented by the same heuristic form. Consequently 
TL cannot be extended to MHD for Pm > 1 without more detailed modeling of the turbulent 
stresses that govern T.   

For unaligned turbulence, the TL procedure replaces the factor Z±
2 in T±(k) with E±(k)k, and 

the factor 
  

€ 

Z

 with ε1/3/k2/3. The latter is the inertial range amplitude obtained from the inertial 

Obukov balance ε = 
  

€ 

T±(k) = Z±
2Z

kΘk  = 

  

€ 

Z


3k. These two replacements give T± = E±(k) ε1/3k5/3, 
and together constitute the TL closure. Substitution into Eq. (4), and solution of the 
differential equation yield the following spectra 

€ 

E±(k) = aε2 / 3k−5 / 3 exp − 3
2

k
kη un

 

 
  

 

 
  

4 / 3 

 

 
 

 

 

 
 
 ,            (unaligned) (5) 

where kηun = ε1/4/η3/4 is recognizable as the Kolmogorov wavenumber for turbulence whose 
inertial spectrum decays as k–5/3.    

For aligned turbulence the closure is applied to 
  

€ 

T±(k) = Z±
2Z

kΘk , with Θk different from 

unity.  As before Z±
2 = E±(k)k. The k dependence of Θk is chosen so that ε = 

  

€ 

T±(k) = Z±
2Z

kΘk  

=  E±
3/2k5/2Θk yields the IK spectrum E±(k) = ε1/2 VA

1/2 /k3/2. This gives Θk = ε1/4/VA
3/4k1/4. The 

remaining factor 
  

€ 

Z

 is taken from the IK spectrum with E±(k) = 

  

€ 

Z


2/k = ε1/2VA
 k-3/2, or 

  

€ 

Z

 = 

ε1/4 VA
1/4/ k1/4. With these substitutions for Z±

2, Θk, and 
  

€ 

Z

, T±(k) = E±(k) ε1/2 k3/2/ VA

1/2. This 
expression constitutes the closure. It is substituted into Eq. (4), which in turn is solved to 
yield the dissipation range spectrum for aligned turbulence: 

€ 

E±(k) = aε1/ 2VA
1/ 2k−3 / 2 exp − 4

3
k
kη un

 

 
  

 

 
  

3 / 2 

 

 
 

 

 

 
 
 ,            (aligned)  (6) 

where kηal = ε1/3/VA
1/3η3/2 is the Kolmogorov wavenumber for aligned turbulence. From the 

functional forms of Eqs. (5) and (6) it is evident that, whereas the aligned spectrum is 
broader than the unaligned spectrum in the inertial range, it has a steeper exponential decay 
in the dissipation range. This feature has a simple explanation.  It can be shown that the 
powers of k in the exponential argument can be recovered from a determination of the 
amount of energy lost to dissipation in an inertial eddy turnover time. In the aligned case the 
broader inertial range spectrum results from the depletion of the nonlinearity, which in turn 
gives a longer eddy turnover time. But the longer eddy turnover time allows greater 
dissipation over the timescale of nonlinear energy transfer. Hence, aligned turbulence has 
steeper decay in the dissipation range. 

The spectra of Eqs. (5) and (6) have two parameters, a and kη. These parameters can be 
determined by fitting to observed spectra. When this is done for the MST spectrum, the 
resistivity from the fit is approximately 50 m2/s, several orders of magnitude larger than the 
true resistivity. This indicates that there is another dissipation mechanism that is much 
stronger than resistivity. Since this analysis properly accounts for spectral transfer, the 
enhanced dissipation must correspond to some other loss of spectral energy. The considera-
tions of Secs. 2 - 4 point to cyclotron-resonant absorption as a likely candidate for this loss. 
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6. Effect on Spectrum II: Impurity-Cyclotron-Resonance Dissipation Range   

In accordance with the above conclusion, we seek some visible signature of cyclotron-
resonant absorption in the magnetic fluctuation spectrum of MST. The left hand portion of 
figure 3 shows the spectrum as a function of toroidal wavenumber n. There is a pronounced 

  
FIG. 3.  On the left, toroidal mode number spectrum in MST, showing deficit of energy on the 
positive-n side.  On the right, scaling of deficit wavenumber with ratio of poloidal to toroidal 
field.  The agreement of theory and experiment suggests that the deficit is associated with 
cyclotron resonant absorption of fluctuation energy. 

asymmetry associated with a deficit of energy on the positive-n side of the spectrum. We 
investigate the possibility that the deficit is due to cyclotron-resonant absorption. Note first 
that in an impurity cyclotron resonance with Alfvén waves ω = k||VA = Ωα, the resonance 
occurs for one sign of the wavenumber only. We use this condition to determine a 
wavenumber at which cyclotron absorption begins to affect the spectrum. In a torus with a 
sheared magnetic field, the parallel wavenumber depends on the toroidal field Bφ and 
poloidal field Bθ as follows: k||(r) = k⋅B/B = m/r – nBφ(r)/RBθ(r). Here we restrict ourselves to 
the outer part of the plasma where Bθ >> Bφ. For the canonical toroidal mode number cascade 
invoked in Secs. 2-4, we set m = 1, and find the value of n/R for which k||VA = Ωα, where Ωα = 
ΩHZ/µ is an impurity cyclotron frequency, and can be expressed in terms of the hydrogen 
cyclotron frequency ΩH, charge number Z, and mass factor µ relative to the hydrogen mass. 
This defines a wavenumber kedge at which cyclotron absorption begins to affect the spectrum, 

€ 

kedge =
n
R

=
Bθ (r)
Bφ (r)

1
r
−ΩH

Z
µ
VA

 

 
 

 

 
 . (7) 

In a sheared field kedge changes with minor radius because the ratio Bθ(r)/Bφ(r) changes with 
minor radius. We pick a nominal kedge from the spectrum in Fig. 3 as the wavenumber at 
which the intensity falls below some threshold, and then track how kedge varies with 
Bθ(r)/Bφ(r) as the probe is placed at different values of the minor radius. The results are 
shown in the right hand side of Fig. 3 as the closed square boxes.  The line connecting open 
boxes is the theoretical expression from Eq. (7). It is evaluated for Z/µ = 0.38, corresponding 
to a low value of Ωα, in this case for the impurity O+6. The overlap of the theoretical and ex-
perimental results is not significant, because the intensity threshold defining kedge in the 
spectrum was arbitrarily chosen. However, the agreement of the slopes is significant, and 
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indicates that the observed asymmetrical deficit of energy in the spectrum is sensitive to the 
cyclotron resonance condition k||VA = Ωα. This indicates there is a causal link between 
elevated ion temperatures and the fluctuation spectrum, providing new evidence that ion 
heating in the RFP is related to cyclotron resonant absorption of fluctuation energy. In the 
future it will be important to develop improved analyses of resonant absorption that account 
for the fluctuations as internally resonant modes in a sheared field, and that properly treat the 
asymmetry of absorption in parallel wavenumber.   

7.  Conclusions 

Observations of anomalous ion heating in the RFP have been difficult to understand in detail, 
in part, because there has been a large number of mechanisms proposed, but insufficient 
point-of-contact between theory and experiment to confirm or falsify hypotheses. This work 
reports progress in the case of cyclotron-resonant absorption of magnetic fluctuation energy. 
The mechanism is shown to give heating rates that are broadly consistent with experiment, 
while also accounting for energy partition between impurities and the bulk ion species in a 
sawtooth crash. Dependencies on density, temperature and fluctuation intensity are also 
consistent with RFP phenomena. The spectrum shows dissipation that cannot be accounted 
for by resistivity and viscosity, but is consistent with cyclotron-resonant absorption. 

Work supported by USDOE under the grant DE-FG02-85ER53212. 
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