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Abstract. Plasma shaping effects on temperature gradient-driven instabilities and geodesic acoustic oscillations 
are investigated with a gyrokinetic theory and a local magnetohydrodynamics equilibrium model. In specific, we 
focus on the effect of the elongation κ , including its radial derivative ( )( )rrs ∂∂= κκκ , in the large aspect 
ratio limit. An analytical formula of the dependence of the GAM frequency on the elongation is given. It is 
found that the GAM frequency sharply decreases with an increasing elongation by dependence of 
( ) ( )[ ] 2/12 12 +− κκs , which comes from the modification of classical ion polarization balanced by that of 

curvature drift polarization. The dependence of the critical threshold of the ETG/ITG instability on the 
elongation is numerically studied and a semi-analytical formula is given as 
( ) ( ) ( ) ( )[ ]111.0136.011,0 −++=== κκκκ

sLRLR sTcTc
.  

 
1. Introduction 
 
Progress in understanding the anomalous transport in plasmas has been continuing for 
decades. It is now widely accepted that the anomalous transport is induced by turbulent 
plasma fluctuations with small scales, the so-called microinstabilities. Simultaneously, micro-
turbulence can drive zonal flows, including the low frequency residual flow and the higher 
frequency geodesic acoustic mode (GAM), [1] and these coherent structures sequently 
moderate turbulent transport.[2-8] However, effects of plasma shape on the transport have not 
been considered as adequately as on the magnetohydrodynamic (MHD) stability property, 
where the dependence of the MHD stability limit on plasma shape is well known both 
theoretically and experimentally. The influence of plasma shape on confinement has been 
studied experimentally, and also, increasing attention [9-12] has been paid with numerical 
simulation of microinstabilities in noncircular plasmas. However, some results are confused 
and, moreover, there is considerable interest in understanding the physics inside. In addition, 
it becomes urgent to investigate the effect of plasma shaping on ZFs. For example, based on 
experimental data of ASDEX-Upgrade, [13] the GAM frequency is found to depend on the 
elongation κ  roughly by the scaling of ( )κ+11 . Simulations [14-16] also show the effect 
of κ  on the frequency, but usually suggest as a κ1 dependence due to the geodesic 
curvature drift term. Therefore, it is important to investigate the effect of plasma shape on 
these coherent modes, as well as those on microinstabilities. Especially, an analytical 
treatment is still desirable since the physics is not clearly displayed yet. 
 
In this paper, we make a generalization of previous gyrokinetic theory [17, 18] in circular 
geometry to the noncircular flux surface to study the drift instability and the GAM, 
respectively. Among plasma shape parameters, the elongation is a leading deformation 
comparing to the Shafranov shift gradient and the triangularity deformation. Finite aspect 
ratio is known to have a strong effect on microinstabilities, but the velocity modulation by the 
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poloidal variation due to finite aspect ratio will cause big difficulty in analytical treatment. 
Moreover, it is known that the leading effect of the elongation is decoupled from the effect of 
finite aspect ratio. Therefore, we may leave the effect of finite aspect ratio and other 
noncircular parameters in a future work. Here we will focus on the effect of the elongation, 
including its radial derivative, in the large aspect ratio limit. An analytical formula of the 
dependence of the GAM frequency on the elongation is presented. The dependence of the 
critical threshold of the ETG/ITG instability on the elongation is numerically studied, but the 
physics is analyzed and a semi-analytical formula is given.   
 
2. The Gyrokinetic Model 
 
We consider a toroidal axisymmetric plasma with a flux surface ( sR , sZ ), written as 

( )θδθ sinsincos 1
0

−++= rRRs , θκ sinrZs = , where 0R  and r are the major and minor 
radius, θ  is the generalized poloidal angle, and κ  and δ  are elongation and triangularity 
deformation. Employing the Miller’s local equilibrium model, [19] the toroidal and poloidal 
fields in the flux surface can be described as st RRBB 00=  and 
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where ( )( ) ( )( )θθ ∂∂∂∂−∂∂∂∂= sssss RrZZrRJ  and ( ) ( )22 θθθ ddZddRddl ss +=  are 
the Jacobian and the differential of poloidal arc length with respect to poloidal angle, and 0B  
is the field at the magnetic axis. We consider an electrostatic potential, 
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ωφφ  with ( ) sJddlr θ=∇ , where x  is a normal distance 

from the flux surface, the eikonal S  can be expanded as ( ) ( )θθφ 10 xSSS ++=  and is  
determined by the relation 0=∇⋅ Sb . In the locally orthogonal coordinate system ( )ξeee ˆ,ˆ,ˆ lx , 
the derivative of the perturbation, in other words, the wave vector, is  
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where, rnqk =θ  and BSBRg ps 1= . Then, the plasma response can be solved as 
( )δφ 00

ˆˆˆ JhTqFf +−=   and the nonadiabatic part satisfies the linear gyrokinetic equation,   

( ) ( ) 00*

ˆˆ FJ
T
ehi T

td δωωφ
θ

ωωω −=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+− .                                  (3)               

Here, 0F  is Maxwellian at temperature 22
tmvT = , 0J  is a zero order Bessel function, 

( )BvBvkk tlx 00
22

⊥+= ρδ  is the finite gyroradius parameter, where 00 Ω= tvρ  is the 
gyroradius with the thermal velocity and the field of 0B , and ( )[ ]BddlBv pt θω ///= , 

( ) Ω∇⋅+∇×⋅∇= mmvBSD bbb 2
//μω , and ( ) xFBeRrncT ps

T ∂∂∇= 0* lnω  are the transit 
frequency, magnetic drift frequency and pressure-driven-diamagnetic drift frequency, 
respectively. In the above, all the subscripts to represent particle species are neglected for 
simplicity of description. After solving the responses for ions and electrons, the quasi-
neutrality condition provide us a governing equation for both microinstabilities and GAM 
oscillations.     
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Generally, the tω , Dω , T
*ω , and δ  are complicated functions of θ  and shape parameters. 

However, in an elliptic nest surface with infinite aspect ratio, they are simplified as follows,   
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where ( )nLeBcTk 0* θω = , ( )000x0 ReBcTkdx =ω , Tn LL=η , dxTdLT ln1 =−  and 
dxndLn ln1 =− . The relative simple expression makes it possible to make an analytical 

treatment in studying the effect of elongation on microinstabilities and GAMs, which is 
displayed in next sections.     
 
3. Applied to Geodesic Acoustic Modes 
 
For GAMs, the toroidal number of the potential perturbation is zero, 0=n , then 0* == θω k .  
The expressions in Eq. (4)-(7) can be simplified further. We can analytically solve the 
gyrokinetic equation as follows,[17] 
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where the periodic boundary condition is automatically satisfied. Moreover, the GAM is 
mostly governed by the ion dynamics and the electron response to the 0≠m  components of 
potential induces a ie TT  correction in the GAM frequency. For simplicity, we assume the 

potential φ̂  has a strict 0=m  structure, then only the ion dynamics is left and the quasi-
neutrality condition reduces to that the flux average of the ion density perturbation is zero, 
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Under the large aspect ratio assumption, the velocity-space integral in Eq. (9) can be written 
as expressions of the plasma dispersion function. Then, Eq. (9) is simplified as follows,     
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where ( ) 22
00 21 κκδ += xk , ( )[ ]2120000 κκωωω sqkxtdxdt +=≡ , ( )κκλ ss += 2 , 

( ) ( ) ( )ωωωωωω ZQ 312 ˆ2ˆ2ˆˆ23ˆ ++−−−= −  and tivqRωω =ˆ . Here, the expansion based on the 
assumption 1<<λ  is performed. The first order term )(λO  is retained except for the terms 
with the order of ( ) ( )11 22 +− κκλ . Also, in Eq. (10), only the leading order )( 2kO terms are 
retained for small k , that is, we only consider the lowest order relation of the GAM 
frequency to the plasma shape. The enhanced damping due to higher order k  terms and 
corresponding higher order harmonic resonances was discussed in circular plasmas [20, 
21]and will not considered here. Now we return to the physics in Eq. (10). The LHS is the so-
called the classical polarization due to the gyro-motion; and the RHS term is the polarization 
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due to the toroidal curvature and gradient drift. The toroidal drift polarization is proportional 
to 21 κ , while the classical polarization is characterized by 2

0δ , which is proportional to 
( ) 22 21 κκ+ . Therefore, the dependence of the GAM frequency on κ  is not simply the 
factor of κ1  in the geodesic curvature drift term, but the result of the balance between the 
classical and drift polarization. As for κs , its modification to the classical polarization, 

λ21− , is just cancelled by  the ( )221/1 κs+  in the 2
0dtω  term for ( ) 12 <<+= κκλ ss  

and only the ( ) 42ωλQ  take into effects. At high q , it is expected 1~ˆ >>tivqRωω . 
Asymptotically expanding the plasma dispersion function and neglecting higher order small 
terms, Eq. (10) reduces to 
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Then, the eigen-frequency of GAM is obtained 
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It is clearly seen from Eq. (12) that, when κ  increases, the real frequency dramatically 
decreases and, correspondingly, the damping becomes strong due to a decrease in the 
frequency in strongly elongated plasmas.  We can compare the analytical formula to the 
experimental scaling and the simulation result. Experimental data on the ASDEX-Upgrade 
[13] shows that the elongation decrease the GAM frequency by the scaling of 

( )κω +∝ 12GAM . The analytical formula we obtained gives ( )12 2 +∝ κωGAM , which is a 
slightly stronger dependence than the experimental scaling, but is closer than the κ1  
dependence. The analytical dependence is also consistent with that from theoretical [22] and 
simulation results [14-16] in trend. As for κs , it slightly decrease the GAM frequency. 
However, it should be noted, since finite κs  introduces high harmonics, the analytical 
process based on the expansion technique in κs , equivalently λ , may not give a right 
estimation on the effect of κs on the damping rate. (It is because, even ( ) ( )ωλω 10 ff >> , it 
cannot get ( )[ ] ( )[ ]ωλω 10 ImIm ff >> ). The explicit expression of the damping rate can be 
given by numerical calculation rather than the analytical derivation by direct expansion 
technique used here, which is scheduled in future work. However, the dependence of real 
frequency is still reasonable since the damping rate is much less than the real frequency.  
 
4. Applied to Temperature Gradient Instabilities 
 
In this section, we turn to temperature gradient instabilities. Here, the potential perturbation 
has a high n , then the periodic boundary condition cannot be easily satisfied due to the 
existence of magnetic shear. However, the ballooning representation can be used, and then 
Eq. (4) can be easily integrated with the boundary condition 0)( =θh  as ∞→θ  as 
follows 
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where the signs “± ” denote different parallel velocity direction. Substituting the integral form 
of )(θh  into the quasi-neutrality condition, a integral eigenmode equation is obtained,  

( ) ( )[ ] 0ˆˆˆ
,

3
00 =++−∑ ∫
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eij
jjjjjjj vdJhhTFqq δφ  ,                           (15) 

Without the plasma shape parameters, the integral equation direct reduces to the equation in 
the α−ŝ  configuration,[18] which has been extensively studied and the code can be 
developed to study the effect of plasma shape without any intrinsic difficulty.  
    
However, before solving Eqs. (14) and (15) numerically, an analysis on the local model may 
be instructional. We can see the drift instability and the GAM are almost two limits of one 
problem. Firstly, the variation of zonal potential in perpendicular plane is across the flux 
surface, while that the potential of the drift instability mainly inside the flux surface. 
Although the radial wave number 0xk  also exists in the study of the two-dimension structure 
of the drift instability, the faster growing mode is usually characterized by 00 =xk . Secondly, 
the GAM depend on the coupling of the curvature drift to the transit motion, therefore it is 
close related to the poloidal dependence of the curvature drift and the transit motion. While, 
the drift instabilities is due to the coupling of the diamagnetic drift to the curvature drift (in 
the toroidal limit) and/or the parallel transit (in the slab limit), therefore, the perturbation has 
a clear streamer structure and is poloidally asymmetric, strongest in the bad-curvature region 
and weakest in the good- curvature region. Then, in the local limit with 0≈θ , we have  

( )( )021 qRvs tt κω += ,                                               (16) 
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If we define  
( )21//// κskk eff +=                                         (20) 

and    

( )21 κ

θ
θ κ s

kk eff +
= ,                                                   (21) 

the dispersion equation reduces to the same form as in circular plasmas. Therefore, if 0=κs , 
the effect of κ  only cause an expansion in θk -spectrum of the frequency and growth rate 
but do not influence the maximum value of the growth rate. Since the critical threshold of 
temperature gradient, TcLR0 , is obtained by scanning the poloidal wavenumber θk , it is 
expected that TcLR0  is hardly influenced by κ  lonely. Of course, if the nonlocal effect is 
included, the κ  can influence the stability property through changing the ratio between the 
poloidal and radial component of curvature drift driving term, i.e. dω  in Eq. (5), and 
introducing the term )( 1Sg  in Eq. (2), which involves the effect of magnetic shear ŝ  and 
plasma pressure α  in circular case. The expression is so complex that only a qualitative 
estimation can be made. If κ  is enough large, the driving force become the same as that in 
the local limit, but the stabilizing  force due to the increase of finite Larmor radius effect 
increases. It means that the κ  has a stabilizing effect in the nonlocal consideration. 
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Now, we stare at the effect of κs . It significantly changes the parallel wave vector. This 
change can be understood as the decrease in the effective safety factor due to finite κs , 

( )21 κsqqeff += . Then we can reach the dependence of the critical gradient on κs  by 
generalizing existing formulae. For example, if we use the q  dependence obtained in 
toroidal geometry as qsLR Tc ˆ91.133.1 +∝ ,[10] it can reach ( ) ( ) += 1~0ksTcTc LRLR  

( ) ( ) kk ssqs 23.01~ˆ91.133.112 ++  for nominal parameters 8.0=s  and 4.1=q . However, 
it underestimates the effect of κs  since the effect of the variation of effq  in effkθ  is 
eliminated by scanning rnqk =θ . If we use the dependence obtained in sheared slab, where 

qRsLRLR nsTc ˆ~ ε∝ , [23] a simple dependence is gotten as ( ) ( ) κsLRLR
ksTcTc 5.010 +==

. 
In fact, in the study [24] of the transition from toroidal to slab temperature gradient driven 
modes, the increase of parallel transit frequency has been shown to increase the threshold 
value of η , where a fitting formula ( ) ( )311 44 xxc ++=η  is given with dtx ωω=  
( ) qks eff ρθκ 21+≈ . It is easily understood that it gives a medium dependence.   

0.4 0.8 1.2 1.6 2.0
0.00

0.08

0.16

γk
θρ

e/ω
*e

k
θ
ρe

 κ=1,  κ=1.5,s
κ
=0,  κ=2,s

κ
=0

 κ=1.5,s
κ
=(κ-1)/κ,  κ=2,s

κ
=(κ-1)/κ

(a)

0.4 0.8 1.2 1.6 2.0
0.0

0.4

0.8 (b)

k
θ
ρe

ω
rk

θρ
e/ω

*e

 

0.4 0.8
0.00

0.08

0.16 (c)

k
θeffρe=k

θ
ρe/[κ(1+s

κ
)]

γk
θρ

e/ω
*e

0.4 0.8
0.0

0.4

0.8
(d)

k
θeffρe=k

θ
ρe/[κ(1+s

κ
)]

ω
rk θ
ρ e/ω

*e

 
FIG. 1. Spectrum of growth rates (a,c) and real frequencies (b,d) of ETG modes. 

 
Numerical results are consistent with our analysis. Calculations are performed for electron 
temperature gradient (ETG) modes with adiabatic ions. In fact, if we do not consider the 
trapped particle effect and the coupling to Alfven waves due to finite β , the ITG and ETG 
have a similar character and only the roles of electrons and ions are interchanged. Figure 1 
shows the normalized growth rate and real frequency as functions of θρ ke  for 0.1=κ , 1.5 
and 2.0 and ( ) κκκ 1−=s  and 0, respectively. Other parameters used are 5.2=Ten LL , 

1=ie TZT , 8.0ˆ =s , 4.1=q  and 00 =nLR . As κ  increases, the θk -spectrum of growth 
rate is greatly shifted towards larger values of ek ρθ , while the maximum of the growth rate 
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only slightly decreases at 0=κs . Only when ( ) κκκ 1−=s  is employed, the growth rate 
decreases significantly as κ , actually κs , increases. It is also easily to understand the 
decrease in the real frequency due to finite κ  and κs  since the major driving force on the 
ballooning-type instability induces the relation of 2

*
2 ~ effD k∝ωωω . Figs. 1(c)-(d) display 

the same results as Figs.1(a)-(b) but effkθ  is used as a variable, where the spectra of growth 
rate and frequency at different κ  converge. It is also trivial that, as κs  increases, the 
growth rate decreases and the spectrum shrinks towards the large wavelength region.    
       
For obtaining the critical electron temperature gradient, generally, it should choose a set of 
θk ’s in the region of fast-growing linear modes to calculate and find the minimum. At typical 

parameters, this fastest growing region is believed at ek ρθ ~0.2-0.4. We expect that, in 
elongated plasmas this region should shift to the larger ek ρθ  region, i.e. eeffk ρθ ~0.2-0.4. 
Numerical results verified our supposition. The scaling of TecLR / , with respect to κ  for 
different κs  is shown in Fig.2. The results can be fitted by this formula well  

( ) ( ) ( ) ( )[ ]111.0136.011 −++== κκκ sLRLR TcTc .                         (22) 
We can compare this fitting formula to our semi-analytical scaling and other fitting formula 
based on simulation results. Our analysis gives the ( ) κs5.0~23.01+  and suggests a weakly 
positive dependence on κ , which agrees well with Eq. (22). Ref. [10] performs a similar 
numerical result as here and also find the increase of TecLR /  is mainly due to the radial 
derivative of κ . However, they used the κκκ srr =∂∂  as a variable and reaches the scaling 
of ( ) ( ) ( )rrLRLR TcTc ∂∂+== κκ 3.011 , which is consistent with Eq. (22) in trend, but neglect 
the effect of κ and overestimate the effect of κs  a little.        
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FIG. 2. Critical temperature gradient vesus elongation. 

5. Summary 
 
In summary, a gyrokinetic theory is established in noncircular toroidal plasmas by employing 
the local MHD equilibrium model. The temperature gradient driven instability and the GAM 
are investigated as two limits of this problem. The GAM is close related to the poloidal 
dependence, or its poloidal average, of the curvature drift and the transit motion, while the 
temperature gradient driven instability is mainly decided by the local behavior around 0≈θ . 
Dependence of the GAM frequency on elongation and its radial derivative are analytically in 
the large aspect limit. It is found that the GAM frequency sharply decreases with an 
increasing elongation by dependence of ( ) ( )[ ] 2/12 12 +− κκs , which comes from the 
modification of classical ion polarization divided by that of curvature drift polarization, where 
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the elongation is a major factor and κs  is a minor one. However, for temperature gradient 
driven instability, as κ  increases, the θk -spectrum of growth rate is greatly shifted towards 
larger values of θk , while the maximum of the growth rate only slightly decreases at 0=κs . 
However, the radial deviation of elongation κs  can significantly influence the stability 
property of temperature gradient instability by modifying the parallel wave number. 
Dependence of the critical temperature gradient on the elongation deformation can be well 
described by this formula as ( ) ( ) ( ) ( )[ ]111.0136.011 −++== κκκ sLRLR TcTc .  
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