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Abstract. Perturbative experiments in fusion plasmas have shown that edge cold pulses travel to the center of

the device on a time scale much faster than expected on the basis of diffusive transport. An open issue is whether

the observed fast pulse propagation is due to non-local transport mechanisms or if it could be explained on the

basis of local transport models. To elucidate this distinction, perturbative experiments involving ICRH power

modulation in addition to cold pulses have been conducted in JET for the same plasma. Local transport models

have found problematic to reconcile the fast propagation of the cold pulses with the comparatively slower

propagation of the heat waves generated by power modulation.  In this paper, a non-local model based on the use

of fractional diffusion operators is used to describe these experiments. The proposed non-local model is able to

reproduce the profiles of the amplitude and the phase of the electron temperature heat waves excited by the

ICRH modulation in JET. Most importantly, for the same model parameter values, the model can successfully

accommodate the propagation of pulses with time delays comparable to those in the experiment, ~4 ms. We also

present a numerical study of the parameter dependence of the transport properties of the fractional model, and

discuss the role of non-locality in the flux-gradient dependence.

1. Introduction

Cold pulse experiments in JET and other machines have shown that perturbations applied at

the edge travel to the center much faster than expected on the basis of diffusive time scales

compatible with plasma confinement, see e.g. [1]. An open issue in describing these

experiments is whether the observed fast propagation is due to non-local transport

mechanisms, or if it could be explained on the basis of non linear but local transport models.

Determining the role of non-locality using only cold pulse experiments is difficult because

both non-linear local and non-local models can exhibit fast propagation for properly chosen

parameters and conditions. Thus, to discriminate between the two transport mechanisms

conclusively, it is necessary to consider, in addition to cold pulses, other type of perturbations

with different propagation properties. The use of RF power modulation perturbations is a

natural choice as it has been experimentally observed that the resulting heat waves exhibit

clear propagation asymmetries compared to pulses. In particular, cold pulses can propagate

fast even in regions where heat waves slowdown. A promising modeling approach is then to

focus on experiments in which both type of perturbations, cold pulses and power modulation,

are present for the same plasma. This type of experiments has been carried out in JET [1,2],

and their modeling is the main object of study in the present paper. Previous attempts to

account for these experiments using local diffusive models have found problematic to

reconcile the fast propagation of the cold pulses with the comparatively slower propagation of

the heat waves generated by power modulation.  In this paper, a non-local model based on the

use of fractional diffusion operators [3] is used to describe these experiments [4].
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2. Non-local transport model

We restrict attention to energy transport in a one-dimensional domain

t 3/2nT[ ] = xq + S  (1)

where x denotes the radial coordinate in the slab approximation. In the standard diffusive

transport model, the flux is determined according to the local Fourier-Fick’s prescription,

qd = eff n xT , where eff denotes the effective diffusivity, and for simplicity we have not

included a drift, pinch term.  In the fractional-diffusion model [3] this prescription is replaced

by

qnl = nl n l aDx
1 r xDb

1[ ]T  (2)

where a Dx
1 and x Db

1 are non-local integro-differential operators defined as
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where l and r are constants,  is the gamma function, (a,b) is the domain of the system, and

the parameter 0< <2 determines the degree of non-locality. In Fourier space, the non-local

flux is

F qnl / nl n( )[ ] = l ik( )
1

r ik( )
1[ ]F T[ ]  (4)

The scaling of the Fourier transform of the flux as a fractional power of k, motivates the

mathematical interpretation of the non-local operators as fractional derivatives. In the limit

=2, the model reduces to the Fourier-Ficks prescription, and in the limit =1 the model

reduces to a free-streaming non-local model.

As it is well known, the standard diffusion model is closely related to the Brownian random

walk. In a similar way, in the case of particle transport, the fractional diffusion model is

closely related to the theory of generalized random walks that allow the incorporation of no-

Gaussian (Levy) and non-Markovian stochastic processes. This connection provides a

foundation of the fractional diffusion model in the context of non-equilibrium statistical

mechanics, see for example Ref.[5], and Ref.[6] for a discussion in the context of plasma

physics. Some previous applications of the fractional diffusion model include the description

of tracer transport in pressure-gradient-driven turbulence [7], and the study of basic non-

diffusive transport phenomenology including anomalous scaling of confinement time, up-hill

transport, pinch-effects and fast propagation phenomena [3]. In this paper we discuss the

application of the model to perturbative experiments in JET [4].

The parameters a and b in the integration limits in Eq.(3) define the lower and upper

boundaries of the domain x a,b( ) .  In the case of a finite size domain, which is the case of

interest here, the definition of the non-local flux requires the regularization of the fractional

derivatives. Here, we adopt the regularization described in [3], and solve Eq.(1) with the total

flux including a diffusive component, qd = eff n xT , and the nonlocal fractional component

qnl  in Eq.(2).  The integration domain is the interval, x 0,1( ), and the boundary conditions
are

q(x = 0,t) = [qd + qnl ](x = 0,t) = 0, T(x =1,t) = 0 (5)
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where x=0 denotes the magnetic axis and x=1 denotes the plasma edge. Based on the

assumption that in magnetically confined plasmas there is a qualitative difference between

core transport and edge transport, we will assume a non-local diffusivity of the form

nl (x) = nl 0

2
tanh

x xc
L

 

 
 

 

 
 + tanh

xc
L

 

 
 

 

 
 

 

 
 

 

 
 (6)

That is, in the core region, x~0, d >> nl , and transport is dominated by diffusive processes.

The transition to non-diffusive transport occurs in a boundary layer at x = xc of width ~L in

which nl  changes from zero to the edge value nl0.

3. Fast pulse propagation in the non-local transport model

In this section we present numerical results on fast cold pulse propagation in the non-local

fractional transport model. Given an equilibrium temperature profile T0(x) , we consider the

evolution of a localized edge temperature perturbation. Figure 1 shows the spatio-temporal

evolution of the perturbed temperature, T(x, t) = T(x, t) T0(x) , and the perturbed flux,

q = q(x, t) q0(x) , where q0(x)  is the equilibrium steady state flux. For the fractional model

we assumed a symmetric, l=r, non-local operator with =1.25. For further details on the

numerical simulations and results corresponding to other parameter values see Ref.[4].

The non-local response to the edge perturbation gives rise to a fast drop of the temperature at

the core, even larger than the drop experienced at intermediate places as evidenced by the

detached green blob near the core at t~0.05 in Fig.1 (a). The evolution of the temperature

pulse can be understood by looking at the corresponding perturbed flux in Fig.1 (b). In the

local diffusive case, q depends on the local gradient of T and therefore no T is detected

near the core since q is highly localized at the edge where x T  is large However, in the

non-local case, q exhibit long-range ‘tongues’ that extend all the way to the core.  The

positive flux contribution of these tongues is responsible for the transport of heat leading to

the rapid cooling of the core.
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(a) δT α=1.25 (b) δq α=1.25

Figure 2 shows the time traces of the normalized temperature perturbations at different
locations, for different values of the non-locality parameter  in the symmetric case, l=r. At
the point where the pulse is introduced, x=0.75, the temperature relaxation is dominated by

FIG. 1.  Space-time evolution

of the temperature

perturbation (a), and the flux

perturbation (b,) during a cold

pulse simulation according to

the non-local, symmetric, l=r,

fractional transport model for

=1.25 .  On (a) blue contours

denote large negative values of

T, and red denotes T=0. On

(b) red (blue) denotes large

positive (negative) values of

q.
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diffusive local transport and very similar behavior is observed independent of the value of
. However, at the core, x=0, a significant delay of the signal is observed in the diffusive

case, and the pulse speed is observed to increase with decreasing . 
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4. Heat wave propagation in the non-local transport model

To study the propagation of “heat waves” due to power modulation, we integrated the non-

local fractional model with a source consisting of an on-axis component, and an off-axis

component localized at x=0.5 including a time-periodic amplitude modulation. To study the

response of the system to the modulation we considered the Fourier decomposition of the

perturbed temperature T = T(x, t) T (x)

T x, t( ) = An (x) cos 2 n t + n (x)[ ]
n=1

(7)

where T = (1/ ) T(t ')dt '
0

 is the time averaged equilibrium profile. Figure 3 shows that,

compared to the cold pulse, non-locality does not seem to have a significant impact on the
relatively slow propagation of temperature perturbations due to power modulation. Although,
as shown in Fig.3 (a), in the fractional diffusion case the temperature perturbation is stronger
near the core, the difference is not very significant. As discussed in Ref.[4], the difference
between the fractional and diffusive dynamics becomes smaller as the power modulation
frequency increases.
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(a) δT α=1.25 (b) δT Diffusive FIG. 3. Spatio-
temporal dynamics of
heat waves generated
by power modulation.
Panel (a) corresponds
to the non-local,
symmetric (l=r)
fractional diffusion
model with a=1.25.
Panel (b) shows the
standard, local,
diffusive case.

FIG. 2. Dependence of the non-

local temperature response on the

fractional diffusion parameter .

The plot shows time traces of the

normalized temperature

perturbation at various spatial

locations, with x=0.75 denoting the

initial location of the cold pulse.

The fastest response, shown in red,

corresponds to =1.25. The blue

curve corresponds to =1.75. For

reference, the slow local diffusive

response is shown in black.
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5. Application of model to JET experiments

Several previous experiments in JET have shown that cold pulse perturbations applied at the

edge, either via laser ablation of metallic impurities or shallow deuterium pellet injections,

travel to the center much faster than expected on the basis of diffusive time scales compatible

with plasma confinement. However, in those experiments it was never clarified whether such

high propagation speed needed a non-local transport component or if they could be described

in the context of local, non-linear models. Indeed, the fast propagation of pulses can be

described in the context of the critical gradient model (CGM) with large stiffness. However, a

potential problem with this approach is that high levels of stiffness imply the fast propagation

of all type of perturbations, and this seems to be in contradiction with the relatively slow

propagation of heat waves observed in JET and other machines.

A convincing test to discriminate between the non-local and the non-linear, critical gradient

length driven, transport can be made only if the two different types of perturbations, power

modulation and cold pulses, are applied to the same plasma. These experiments have been

carried out on JET [2,8] and are the main object of study here. Figure 4 shows the measured

amplitude and phase profiles in Eq.(7) of the 1st and 3rd harmonics of the electron

temperature. At the end of the power modulation phase, a cold pulse is applied to cool the

plasma edge. Figure 5 shows the time evolution of Te at different radii following the edge

cooling. It is observed that the signal at the core exhibits a temperature drop of 30 eV in about

4 ms.
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models or turbulence codes have found problematic to reconcile the fast propagation of the

cold pulses with the relatively slower propagation of the heat waves. For example, the

Weiland model [10] accounts reasonably well for the heat wave propagation but predicts a

delay of the order of 50 ms for the cold pulse. On the other hand, the 3D fluid turbulence code

TRB [11] predicts a very fast propagation speed for both pulses and heat waves. In the 3D

global electromagnetic code CUTIE [12] cold pulses damp fast in the outer region without

reaching the center, and power modulation simulations are not feasible due to the long time

FIG. 4.  Experimental (dots) and non-local model

(lines) profiles of A and F corresponding to the 1
st

(black) and the3
rd

 (red) harmonics.

Both perturbative experiments,

the cold pulse and the heat wave,

have been simulated using the

critical gradient transport model

(CGM) in Ref.[7]. Results are
described in detail in Ref.[2]. The

stiffness level and other

parameters of the CGM are first

determined by fitting the

modulation data, and then the

model is used to predict the

propagation speed of the cold

pulse. In this case, the CGM

predicts a pulse delay of 22 ms

that is much longer than the

experimentally observed delay of

4 ms. In addition to the semi-

empirical CGM, other attempts to

describe these experiments using

first principle based transport
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scales involved in JET. Turbulence spreading models tend to do a better job accounting to

faster responses while at the same time succeeding in reproducing the modulation data [13].

This apparent lack of successes of local transport models is our main motivation to study the

application of the non-local fractional diffusion model discussed in Sec.2. to describe the

perturbative experiments at JET.
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As a first step we calibrated the fractional diffusion model by fitting the amplitude and the

phase profiles of the dominant harmonics of the electron temperature corresponding to the

propagation of heat waves excited by the ICRH modulation in JET. Figure 4 shows that a

good fit is achieved with n = 2.6 1019  part/m
3
, =1.25, l=r, a standard diffusivity profile of

the form d = 0.75 + 6x( ) m2/sec, and a fractional diffusivity of the form in Eq.(6) with

nl0 = 2  m /sec, xc=0.1, and L=0.025. Once the model parameters are determined by fitting

the modulation data, the second critical step is to predict the propagation speed of the pulse.

As mentioned before, it is here that the local models apparently fail by significantly

underestimating the pulse speed. However, as shown in Fig.5 this is not the case with the

fractional model. In particular, consistent with the experiment, the non-locality of the

fractional model can successfully accommodate the propagation of pulses with a time delay of

the order of ~4 ms.

To further explore the role of non-locality Figs. 6 and 7 show the flux-gradient relation at

different locations for power modulation and cold pulse propagation. The data corresponds to

the fractional diffusion model used to describe the JET data in Figs. 4 and 5. Figure 6 exhibits

a close to linear flux-gradient relation indicative that in the case of ICRH power modulation

transport is mostly local. This is consistent with Fig.3 according to which non-locality does

not seem to have a significant impact in the propagation of heat waves. However, the ‘loops’

FIG. 5 Comparison between the temperature traces in JET (a) and the non-local

fractional model (b). Consistent with the experiment, the model exhibits a drop of 30 eV
(corresponding to the dashed red line) in about 4ms.
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in Fig.7 provide evidence of strong non-local transport in the propagation of the cold pulse. In

particular, the observed multivalued flux-gradient relation in Fig.7 is inconsistent with a local

diffusive Fourier-Ficks prescription unless a very peculiar, ad-hoc spatio-temporal

dependence is built in the effective diffusivity.

6. Conclusions

Non-local fractional transport models are a natural generalization of diffusive models that

provide a unifying framework to describe non-diffusive transport including anomalous

scaling, spatial non-locality and  non-Markovian (memory) effects. These models have been

successfully applied in the past to describe basic non-diffusive transport phenomenology in

fusion plasmas, and quantitative aspects of test particle transport in plasma turbulence.

Here we have shown that fractional diffusion is able to reproduce cold pulse and power

modulation perturbative experiments conducted in JET that have not been satisfactorily

described using local transport models. The JET experiments discussed here show an

asymmetry between the propagation of perturbations due to heat modulation and cold pulses.

For x > xs, where xs denotes the location of the ICRH power deposition, waves and pulses

FIG.7.  Flux-gradient relation
during the cold pulse
propagation at fixed locations.
The  spat ia l  loca t ions
correspond to those shown in
the temperature traces in
Fig.5. The circles along the
paths correspond to t=0, 1.3,
2, 4, 6, 10, 15 and 50 ms. The
triangles mark the initial time,
t=0, when the pulse was
introduced, and the squares
mark the time of arrival of the
pulse to the core, t=4 ms.

FIG. 6. Flux-gradient relation over

a cycle of the ICRH power

modulation at fixed spatial

locations. The point x=0.3 is near

the location of the peak of the

modulation (see FIG. 4). Contrary

to the cold pulse, in the case of

modulation the flux is to a good

approximation linearly

proportional to the gradient,
indicative of local transport.
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propagate fast. However, for x < xs the heat wave slows down and is damped, but the cold

pulses still travel fast.  Local transport models have found problematic to simultaneously

describe both types of perturbations. In particular, when these models are calibrated to

reproduce the slow modulation data, they significantly underestimate the fast propagation of

pulses. Here we have shown that a transport model that incorporates a fractional diffusion

non-local transport channel as well as a local diffusive channel is able to reproduce

satisfactorily both the modulation data and the fast propagation of the pulses.

We have also presented a numerical study of the parameter dependence of the transport

properties of the fractional model. It was observed that decreasing  leads to an increase of

the propagation speed of pulses. The parameter dependence of the transport properties in the

case of power modulation is weaker. In particular, for high frequency perturbations, the

amplitude  and the phase of the first harmonic of the temperature perturbation are not very

sensitive to changes in . For low frequencies, consistent with the cold pulse results, the

speed of the heat wave increases with decreasing .

Non-locality and critical gradient non-linearities play a complimentary role, and a complete

model of perturbative transport most likely should include both. The main motivation to limit

attention in this paper to linear non-local models without critical gradients is conceptual and

mathematical simplicity. The relatively simple linear model discussed here, has allowed us to

make evident the previously overlooked role played by non-locality, independent of further

potential complications due to nonlinearity.
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