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Abstract. A comprehensive transport equation for the evolution of toroidal rotation in tokamak plasmas
is developed from the two-fluid momentum equations taking account of the constraints imposed by faster time
scale processes. In addition to the usual collision-induced and microturbulence-induced transport processes, the
plasma toroidal rotation equation includes the effects of non-axisymmetric field errors produced by external fields
and MHD-type instabilities in the plasma. Non-resonant field errors produce a toroidal torque throughout the
plasma that relaxes the toroidal flow to an “intrinsic” ion-temperature-gradient diamagnetic-type flow in the
direction counter to the plasma current. A resonant field error causes a toroidal torque localized near its ratio-
nal surface. The combination of resonant and non-resonant field errors is found to predict scalings for error field
penetration and mode locking thresholds that are in closer agreement with empirical data from tokamak plasmas.

1. Introduction

Determining the magnitude, radial profile and evolution of toroidal rotation in tokamak plasmas (and
ITER) is an important issue — for E×B flow shear control of anomalous transport, prevention of locked
modes, ELM control via RMPs etc. Many effects influence the evolution of toroidal rotation in tokamak
plasmas. Momentum sources and radial plasma transport due to axisymmetric neoclassical and paleo-
classical as well as microturbulence-induced anomalous processes are usually considered. In addition, the
toroidal rotation can be affected by magnetic field errors, which this work concentrates on. Most of these
plasma transport processes can also produce momentum pinch and intrinsic rotation effects.

2. Field Errors And Their Effects On Toroidal Plasma Rotation

Small, non-axisymmetric field errors (FEs) in tokamaks arise from coil irregularities, active control
coils and magnetic field distortions caused by collective plasma instabilities (e.g., NTMs, RWMs). Non-
resonant field errors cause transit-time magnetic pumping (TTMP), ripple-trapping and radial drifts of
bananas; they lead to non-ambipolar radial particle fluxes and toroidal flow damping over the entire
plasma. Resonant field errors cause localized electromagnetic torques on rational surfaces in toroidally
rotating plasmas. Toroidal flow inhibits penetration of resonant field errors into the plasma by producing
a shielding effect on rational surfaces. Sufficiently large resonant FEs can lock plasma rotation at rational
surfaces to the wall and lead to magnetic islands and reduced plasma confinement or disruptions. Anal-
ysis of field error effects will be facilitated by assuming the 3-D field components are first order in the
small gyroradius expansion which will separate the time scales for damping of poloidal and toroidal flows.

3. Plasma And Magnetic Field Models, Perturbation Procedure

The tokamak plasma will be described by two-fluid equations including transport-level sources and
a neoclassical-based viscous force 〈B ·∇·π〉. In particular, the momentum (force balance) equation for
electron and ion plasma species will be written in the form (see, for example [1])

mndV/dt = nq(E + V×B)−∇p−∇·π + R + Sm, dV/dt ≡ ∂/∂t+ V·∇V. (1)

Here, R (∼ nee ηJ) is the Coulomb collision frictional force density, −∇·π is the viscous force density,
Sm is the momentum source per unit volume due for example to energetic neutral beam injection (NBI)
or radio frequency (RF) waves; the other notation is standard.

The lowest order axisymmetric equilibrium magnetic field B0 is composed of toroidal (Bt) and poloidal
(Bp) components. It will be represented in terms of the equilibrium poloidal magnetic flux 2πψ0(ρ) by

B0 = Bt + Bp ≡ I∇ζ +∇ζ×∇ψ0 =∇ψ0×∇(q θ − ζ), I(ψ0) ≡ RBt. (2)

Here, ρ ≡
√
ψt/ψt(a) is a dimensionless radial coordinate based on the toroidal magnetic flux ψt, ζ is the

toroidal (axisymmetry) angle, q(ψ0) ≡ B ·∇ζ/B ·∇θ = dψt/dψ0 is the inverse of the rotational transform
of the magnetic field and θ is the “straight-field-line” (on a flux suface) poloidal angle. The contravariant
base vectors (ei ≡ ∇ui) for the non-orthogonal ui = ρ, θ, ζ coordinate system are eρ ≡ ∇ρ, eθ ≡ ∇θ,
eζ ≡ ∇ζ. The covariant base vectors (ei ≡ ∂x/∂ui) are eρ =

√
g∇θ×∇ζ, eθ =

√
g∇ζ×∇ρ, eζ =√

g∇ρ×∇θ, in which the Jacobian is
√
g = 1/∇ρ ·∇θ×∇ζ = (dψ0/dρ)/B0·∇θ = (dψ0/dρ)(qR2/I).
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Because of toroidal axisymmetry, eζ ≡ ∇ζ = êζ/R and eζ = R2∇ζ = R êζ in which R(x) is the major
radius to x and êζ is a unit vector in the ζ direction.

We consider mainly the hot core region of tokamak plasmas, which will be assumed to be in the
banana-plateau collisionality regime. Thus, to lowest order in the small gyroradius expansion the density
n, temperature T and pressure p ≡ nT of both plasma species will be [2] constant on the equilibrium
flux surfaces ψ0(ρ). To first order we allow for “zero-average” non-axisymmetric (3-D) perturbations
(instability-induced fluctuations or due to field errors, denoted by tilde) and poloidal variations in the
average (denoted by overbar) plasma parameters. Thus, we expand n, T and p, for example, as

p(x, t) = p0(ρ) + δ [p̄1(ρ, θ) + p̃1(ρ, θ, ζ, t)] +O{δ2}, (3)

in which δ ∼ %∇⊥ ∼ %/L⊥ � 1 is the small gyroradius expansion parameter. Here % = vTs/ωcs is
the most probable gyroradius for a species s with thermal speed vTs ≡

√
2Ts0/ms and gyrofrequency

ωcs ≡ qsB0/ms. The electric potential φ is expanded similarly. The magnetic field will be expanded as

B = B0(ρ, θ) + δ [B̃⊥ + B̃‖] +O{δ2}, (4)

The perpendicular (subscript ⊥) and parallel (‖) directions are defined relative to the equilibrium mag-
netic field direction B0. We will assume that the poloidal magnetic flux surfaces ψ0(ρ) are nested; thus,
while B̃⊥ will be allowed to have resonant components, they will not be allowed to be large enough to
form magnetic islands in the plasma region being considered. However, the analysis presented below will
be applicable to the non-resonant regions outside magnetic islands. The magnitude of the total magnetic
field is given approximately by

B ≡ |B| =
(
B2

0 + 2 δ B0B̃‖ + δ2B̃2
⊥ + δ2B̃2

‖

)1/2

' B0(ρ, θ) + δ B̃‖(ρ, θ, ζ, t) +O{δ2}. (5)

The main effects of non-resonant magnetic field errors (induced externally or by MHD-type instabilities)
will be caused by B̃‖, which will in general be written as

B̃‖ =
∑
mn 6=0

[Bmnc(ρ, t) cos(mθ − nζ) +Bmns(ρ, t) sin(mθ − nζ)] . (6)

Perpendicular gradients of instability-induced fluctuations will be assumed to scale as 1/δ to reflect
the short radial scale length of drift-wave-type perturbations. Thus, for example, ∇⊥p̃1 ∼ (1/δ) δ ∼ δ0.
In contrast, parallel gradients of fluctuations will be assumed to scale with the overall tokamak plasma
dimensions, and hence as δ0; thus,∇‖p̃1 ∼ δ0δ ∼ δ. Gradients of average quantities and parallel gradients
of perturbations will be assumed to scale as δ0.

4. Successsive Time Scales, Processes

The toroidal plasma rotation evolves on the long, transport time scale ( >∼ 0.1 sec). Its evolution arises
from effects that are formally second order in the small gyroradius expansion. To obtain a toroidal flow
evolution equation on this long time scale we must take account of faster processes and the constraints they
impose on the plasma behavior [3] — MHD radial force balance equilibrium from compressional Alfvén
waves ( <∼ 0.1µsec time scale), equilibration along field lines and incompressible flows from thermalization
and sound wave effects (on >∼ µsec time scales), and poloidal flow damping from ion collisional effects
(on >∼ msec time scale).

Summing the density and momentum equations over species, to zeroth order in δ we readily obtain the
magnetohydrodynamic (MHD) plasma equations ∂ρm/∂t +∇· ρmV = 0 and ρm dV/dt = J×B −∇P ,
in which P = pe + pi is the total plasma pressure. Neglecting electron inertia, the lowest order electron
momentum equation yields Ohm’s law: E + V×B = (J×B −∇pe)/nee. Adding the non-relativistic
Maxwell equations ∇·B = 0, ∇×B = µ0J, ∂B/∂t = −∇×E and an isentropic equation of state
d/dt lnP/ρΓ

m = O{δ2} −→ 0, which is derivable from the species energy balance equations, completes
the ideal MHD plasma description. The fastest time scale MHD processes are compressional Alfvén
waves, which propagate perpendicular to magnetic field lines. On time scales longer than their natural
wave periods (τA ∼ a/cA <∼ 0.1µsec), together with the condition B ·∇P = 0 =⇒ P0 = P0(ψ0) (sound
waves plus viscous damping thereof cause the plasma pressure to be constant along field lines), they cause
tokamak plasmas to come into a radial force balance equilibrium with J0×B0 = ∇P0 = ∇ψ0 dP0/dψ0.
Since ∇P0 =∇pe0 +∇pi0, using this relation in the ideal MHD Ohm’s law yields

0 = ni0qi(E0 + V̄i×B0)−∇pi0, (7)
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in which the lowest order electric field is electrostatic: E0 ≡ −∇Φ0(ψ0). This MHD equilibrium ion
force balance equation can also be obtained directly from the equilibium limit (d/dt −→ 0) of the ion
momentum equation in (1) — by neglecting the frictional (R ∼ δ) and viscous (∇·π ∼ δ) forces, and
momentum sources (Sm ∼ δ2), which are higher order in the gyroradius expansion. Taking the “radial”
(eρ) projection of (7) yields

Ωt ≡ V̄i ·∇ζ = −
(
dΦ0

dψ0
+

1
ni0qi

dpi0
dψ0

− q V̄i ·∇θ
)

+O{δ2}. (8)

While this equation provides a relation between average (designated by overbar) toroidal flow (V̄i ·∇ζ ∼
V̄t/R), the lowest order radial electric field E0ρ ≡ −(dΦ0/dψ0)(dψ0/dρ) and the average poloidal ion
flow (V̄i ·∇θ ∼ V̄p/r), it does not specify any of these quantities. The toroidal and poloidal ion flows
are first order in the gyroradius. Thus, flows within tokamak flux surfaces are first order in the small
gyroradius expansion. Average transport flows in the radial direction (i.e., V̄·∇ψ0) will be second order
in the gyroradius expansion.

Coulomb collisions cause the electrons to thermalize (become Maxwellian) on the electron collision
time scale (∼ 1/νe ∼ 10µsec) and the ions to thermalize on the ion collision time scale (∼ 1/νi ∼ msec).
In doing so they cause the corresponding species temperatures to equilibrate along magnetic field lines
over distances of order the collision length λ ∼ vT /ν � Rq, which causes [2] the species density and
temperature to become constant on flux surfaces on the collision time scale of the species: n0 = n0(ψ0),
T0 = T0(ψ0) for t > 1/ν. On this same time scale the species flow velocity becomes a defineable and
physically meaningful quantity.

Since the lowest order average flows lie within a flux surface, these first order electron and ion flow
velocities can be written in terms of their poloidal (V̄·∇θ) and toroidal (V̄·∇ζ) components:

V̄1 ≡ eθV̄·∇θ + eζV̄·∇ζ = V̄‖B0/B0 + V̄∧. (9)

Alternatively, as indicated, the flows within the flux surface can be represented by their components
parallel to (‖) and cross (∧, perpendicular to B0 but within a flux surface) the equilibrium magnetic field
B0. The first order average and perturbed cross flows in each species are obtained by taking the cross
product of B0 with the first order momentum equation (1):

V̄s∧ =
B0×∇ψ0

B2
0

(
dΦ0

dψ0
+

1
ns0qs

dps0
dψ0

)
, Ṽs∧ =

1
B2

0

B0×
(
∇φ̃1 +

1
ns0qs

∇p̃s1
)
. (10)

The terms in parentheses are the usual equilibrium and perturbed E×B0 and diamagnetic flows.
Since the “equilibrium” density n0 only changes on the transport time scale (∂/∂ ∼ δ2) and the

radial transport flow (V·∇ψ0) and density sources are second order in δ, the lowest order average density
equation reduces to ∇·V̄1 = 0 + O{δ2}. Because of axisymmetry (∂/∂ζ → 0) in the equilibrium, this
incompressibility condition for the first order flows reduces to [4]

(B0 ·∇θ)
∂

∂θ

(
V̄1·∇θ
B0 ·∇θ

)
= 0 =⇒ Uθ(ψ0) ≡ V̄1·∇θ

B0 ·∇θ
=
V̄‖

B0
+

I

B2
0

(
dΦ0

dψ0
+

1
ns0qs

dps0
dψ0

)
. (11)

Similar considerations and orderings of the energy and heat flux fluid moment equations yield [3, 4]
analogous formulas for the first order equilibrium heat flows within a tokamak flux surface:

Qθ(ψ0) ≡ q̄1·∇θ
B0 ·∇θ

=
q̄‖

B0
+

q̄∧·∇θ
B0 ·∇θ

,
q̄∧·∇θ
B0 ·∇θ

=
5
2
ns0Ts0 I

qsB2
0

d Ts0
dψ0

. (12)

The flux-surface-average of the parallel (B0·) component of the lowest order ion heat flux equation [4]
yields 〈B0·Rqi

〉 = 0 + O{δ2} in which Rqi
∝ −νiqi is the ion heat friction force. Thus, we must have

〈qi‖B0〉 = 0. Solving (12) for qi‖ and substituting it in this relation yields [4]

Qiθ =
1
〈B2

0〉

〈
B2

0

qi∧·∇θ
B0 ·∇θ

〉
=

5
2
ni0Ti0 I

qi〈B2
0〉

d Ti0
dψ0

. (13)

Parallel force balance in the plasma is obtained from the flux-surface-average of the parallel (B0 ·)
component of the sum of the electron and ion momentum equations (1), neglecting Sm ∼ δ2:

ρm
∂〈B0 ·V̄i〉

∂t
= −

∑
s

〈B0·∇·πs‖〉 ' − 〈B0·∇·πi‖〉. (14)
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The last form results from the electron viscous force being a factor of
√
me/mi ∼ 1/60 smaller than that

for the ions. The flux-surface-average of the equilibrium parallel neoclassical viscous force is [4]

〈B0·∇·πi‖〉 ' mini

[
µ00Uiθ + µ01

−2
5niTi

Qiθ

]
〈B2

0〉. (15)

Here, µ00, µ01 ∼
√
ε νi are damping frequencies for the poloidal ion flow. Thus, Eq. (14) is an evolution

equation for the parallel ion flow Vi‖ or the poloidal ion flow function Uiθ. The parallel and poloidal ion
flows come into equilibrium [5] on the ion collision time scale t > 1/νi ∼ msec. Then, the equilibrium
poloidal ion flow is obtained by setting the parallel viscous force in (15) to zero:

Uiθ ' −
µ01

µ00

− 2
5niTi

Qiθ = cp
I

qi〈B2
0〉
d Ti0
dψ0

. (16)

The “poloidal” coefficient cp ≡ µ01/µ00 is 1.17 in the banana collisionality regime (ν∗i ≡ νiRq/ε3/2vTi �
1). However, it depends on the ion collisionality regime; also, with impurities it depends on gradients of
the impurity density and temperature. It is often evaluated numerically using the NCLASS code [6].

Physically, the ion parallel viscous force 〈B0·∇·πi‖〉 is caused by collisional trapped particle drag on
the untrapped particles that carry the parallel (poloidal) flow. This parallel ion viscous force damps the
poloidal flow to an ion-temperature-gradient-driven diamagnetic-type flow because hotter ions are more
collisionless than bulk ions and hotter regions at smaller radii damp less than colder ones at larger radii.

Analysis of the effects of viscous forces is simplified in tokamaks and quasi-symmetric stellarators
compared to that in general stellarators because the variations in the magnetic field strength B occur
predominantly in a single direction (poloidal in tokamaks). Thus, in tokamak plasmas the poloidal flow
damping occurs on a much faster time scale (∼ 1/|V̄1·∇θ| ∼ 1/νi ∼ 1/δ) than the viscous damping
of the toroidal flow, which is demoted to the much longer transport time scale (∼ 1/δ2) — because
B̃‖/B0 ∼ δ � 1. Also, since ions cause the predominant non-ambipolar particle fluxes in tokamaks, we
will be concentrating on what in stellarators is usually referred to as the “ion root” of particle transport.

Having determined the poloidal ion flow V̄i·∇θ = Uiθ(B0·∇θ) = Uiθ(I/qR2), we substitute it into
the toroidal flow relation (8) to obtain the more specific toroidal flow relation (for t > 1/νi >∼ 1 msec)

Ωt(ρ, θ, t) = −
(
dφ0

dψ0
+

1
ni0qi

dpi0
dψ0

− cpI
2

qiR2〈B2
0〉
d Ti0
dψ0

)
. (17)

While this equation provides a relation between the toroidal rotation frequency Ωt ≡ V̄·∇ζ ' V̄t/R
and the lowest order radial electric field E0ρ ≡ −(dΦ0/dψ0)(dψ0/dρ), it does not specify either of these
quantities. To proceed further we need to obtain an equation for the evolution of either the radial electric
field or the toroidal rotation itself. We proceed by calculating the radial particle transport fluxes and
hence net radial current in the spirit of trying to calculate the radial electric field.

5. Toroidal Rotation Equation

The second order radial particle flux for each species will be obtained by taking the cross product
of the momentum equation in (1) with the equilibrium magnetic field B0 using the small gyroradius
expansions indicated in (3) and (4), and averaging over fluctuations to yield

n0qV̄2⊥ =
∑

Forces×B0/B
2
0 . (18)

The net force densities on each plasma species, averaged over fluctuations, to lowest order [3] are

∑
Forces = n0q (−∇φ̄1 + ĒA+ Ṽ1×B̃)− ∇p̄1 −∇·π̄ + R̄ + S̄m −mn0

∂V̄1

∂t
−mn0Ṽ1·∇Ṽ1. (19)

The flux-surface-average “radial” particle flux of each species (subscript s) induced by these forces is

Γψ ≡ 〈n0V̄2⊥·∇ψ0〉 =
〈

B0×∇ψ0

qsB2
0

·
∑

Forces

〉
=

1
qs

〈(
I B0

B2
0

− eζ

)
·
∑

Forces

〉
. (20)

As indicated in the discussion following (14) above, the flux-surface-average of the parallel (to B0) forces
vanish on the transport time scale. Thus, it is only the variations of parallel forces divided by B2

0 within
flux surfaces and the forces in the toroidal direction eζ ∝ ∇ζ that contribute to the radial particle
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flux. Further, the radial particle fluxes can be split into ambipolar and non-ambipolar components. The
ambipolar particle fluxes Γa

ψ are caused by [3]: E×B0 flow, classical diffusion [1] due to R, Pfirsch-Schlüter
diffusion due to the variation of the parallel Ohm’s law within the flux surface [4], and neoclassical diffusion
due to [4] 〈B0·∇·π〉. Since for ambipolar flows the electron and ion flows are equal, these components
yield no net radial current. The toroidal components of the rest of the forces in (19) yield non-ambipolar
particle fluxes Γna

ψ due to [3]: the Ṽ×B̃ forces within resistive layers around rational surfaces, the viscous
forces −∇·π, polarization flows induced by the mn0 ∂V̄1/∂t inertial force, the Reynolds stress force
mn0Ṽ1·∇Ṽ1 due to micro-turbulence, and momentum sources.

When summed over species, the non-ambipolar particle fluxes can in principle produce a net radial
current. However, the flux-surface-averaged charge conservation relation and Gauss’ law yield ∂〈ρq〉/∂t+
〈∇·J〉 = ε0〈∇· ∂E/∂t〉 + (1/V ′)(∂/∂ψ0)(V ′〈J·∇ψ0〉) = 0, in which V ′ ≡ dV (ρ)/dρ with V (ρ) being
the volume of the ρ flux surface. In order to obtain a steady-state radial electric field [8] we set the
flux-surface-average of the net radial current (i.e., 〈J ·∇ψ0〉) to zero, which yields [7, 8] the transport-
time-scale toroidal flow evolution equation (eζ ≡ R2∇ζ):

mini0〈R2〉∂Ωt
∂t︸ ︷︷ ︸

inertia

= 〈eζ · J̃×B̃〉︸ ︷︷ ︸
res. FEs

−〈eζ·∇·π‖i〉︸ ︷︷ ︸
due to B̃‖

− 〈eζ·∇·π⊥i〉︸ ︷︷ ︸
cl, neo, paleo

−〈mini0eζ·Ṽi·∇Ṽi〉︸ ︷︷ ︸
fluctuations

+ 〈eζ ·
∑
s

Sms〉︸ ︷︷ ︸
sources

. (21)

This equation can also be obtained directly from the flux-surface-average of the toroidal angular momen-
tum projection (i.e., 〈eζ · 〉 = 〈R2∇ζ · 〉) of the momentum balance equation (1).

The first two terms on the right of (21) are discussed in the next two sections. The third term,
〈eζ·∇·π⊥i〉, represents the effects of perpendicular ion viscosity due to classical [1] and neoclassical
[11] transport due to radial gyromotion and guiding center motion off of flux surfaces, plus paleo-
classical transport processes [12] that result from transforming the drift-kinetic equation from labora-
tory (x) to poloidal flux coordinates [13]. They can all be put in the form (1/V ′)(∂/∂ρ)(V ′Πiζ) with
Πiζ = mini0〈R2〉(−χζ ∂Ωt/∂ρ+other terms), which indicates radial diffusion plus pinch-type and other ef-
fects on toroidal plasma rotation. However, these collisional transport effects are usually negligibly small:
χζ ∼ νi%

2
i (1 + q2) < 0.1 m2/s for classical [1] and neoclassical [11] processes and χζ ∼ η/µ0 < 1 m2/s

(magnetic field diffusivity) for paleocassical processes [13]. The toroidal component of the Reynolds stress
term 〈mini0eζ·Ṽi·∇Ṽi〉 induced by plasma micro-turbulence can be put into the same form [14]. It is
likely to be the dominant radial momentum transport process that balances large momentum sources
〈eζ·

∑
s Sms〉, e.g., due to NBI; its determination is an active area of research [14].

6. Neoclassical Toroidal Viscosity (NTV)

In axisymmetric neoclassical theory there is no toroidal viscous torque [4] due to parallel stresses (π‖)
in the plasma (i.e., 〈R2∇ζ ·∇·π‖〉 = 0) — because in an axisymmetric system the magnetic field strength
does not vary in the toroidal direction and hence the flow is not viscously damped in this symmetry
direction. However, non-axisymmetries due to small field errors (i.e., B̃‖) can cause bounce-average
radial drifts of particles and non-ambipolar (superscript na) radial particle fluxes (Γna

ψ ). The concomitant
neoclassical toroidal viscous (NTV) torque is then determined from the relation 〈eζ·∇·π‖i〉 = qiΓna

ψ . The
physical effects that induce non-ambipolar radial ion particle fluxes are: magnetic pumping (TTMP) via
non-axisymmetry effects on untrapped ions [9, 7], radial drifts of ions trapped in toroidally localized
magnetic field wells due to the ripple induced by the finite number of toroidal field coils [10], and radial
drifts of the centers of banana drift orbits of trapped ions induced by the non-axisymmetry [15]. Since
these effects involve different physical processes and regions of velocity space (barely passing for TTMP,
deeply trapped in ripple wells for ripple-trapped, and all particles trapped in the “global” variation of
B0 along field lines for banana center drifts), their effects can just be added.

We will illustrate the generic form of these effects by discussing the determination of the ion banana-
drift effects [15, 16], which are often dominant in the hot core of tokamak plasmas. Here, we adopt an
equilibrium magnetic field model B0 = ∇ψ0×∇β in which β ≡ qθ − ζ is the cross (∼ poloidal) field
line label for the B0 in (2). In the low ion collisionality regime ν∗i ≡ νiRq/ε

3/2vTi � 1 the lowest order
bounce-averaged drift-kinetic equation is β̇ ∂f0/∂β ≡ 〈vd ·∇β〉b ∂f0/∂β = 〈C{f0}〉b, which is satisfied by
a Maxwellian on the equilibrium flux surface: f0 = fM(ψ0). Here, β̇ ≡ 〈vd ·∇β〉b ' ωE ≡ dΦ0/dψ0 is
the bounce-averaged (subscript b) cross (∇β direction here) drift frequency of the ions, which is given
approximately by the E×B0 drift frequency. The next order drift-kinetic equation is [15, 16]

β̇
∂f1

∂β
−〈C{f1}〉b = 〈vd ·∇ψ0〉b

∂fM
∂ψ0

,
∂fM
∂ψ0

= fM

[
1
pi0

dpi0
dψ0

+
qi
Ti0

dΦ0

dψ0
+
(
E
Ti0
− 5

2

)
1
Ti0

dTi0
dψ0

]
. (22)
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The bounce-average radial drifts of particles at frequency 〈vd ·∇ψ0〉b ∝ (B̃‖/B0) vd0 clearly cause the
distribution function distortion f1 which will lead to the ion non-ambiplolar flux

Γna
ψ ≡ 〈niVi·∇ψ0〉 = 〈

∫
d3v vd ·∇ψ0 f1 〉 ∼ −Dna (dni0/dψ0) 〈|∇ψ0|2〉, (23)

with non-ambipolar diffusion coefficient Dna (m2/s). The thermodynamic drive ∂fM/∂ψ0 can also be
written in terms of the toroidal rotation frequency Ωt using its definition in (17):

∂fM
∂ψ0

=
qifM
Ti0

[Ωt − Ω(E , θ)], Ω(E , θ) =
[
cp

I2

R2〈B2
0〉

+
(
E
Ti0
− 5

2

)]
1
qi0

dTi0
dψ0

. (24)

Thus, the thermodynamic drive ∂fm/∂ψ0 can either be thought of as being caused by (in the usual kinetic
sense) the radial gradients of the potential, pressure and temperature gradients, or as being caused by (in
the fluid moment sense) a toroidal flow velocity or rotation. After being averaged over particle kinetic
energy E and a flux surface, Ω∗ ≡ 〈〈Ω〉〉E will represent an “intrinsic” toroidal rotation frequency to which
the neoclassical toroidal viscosity (NTV) will try to relax the plasma to restore ambipolarity.

Since derivations [15, 16] of the neoclassical toroidal viscosity are rather complicated, we will only
sketch their derivation and indicate the dominant scaling factors in their results. In such analyses it is
assumed that the poloidal variation of the magnetic field B is small: ε ≡ (Bmax−Bmin)/(Bmax +Bmin) ∼
r/R0 � 1 — the large inverse aspect ratio expansion. Only trapped ions, which are a fraction ∼

√
ε < 1

of the ions, are involved in banana-drift effects; their effective collision frequency is [2, 4] νi/ε. Thus, for
scaling purposes in solving (22), we use 〈C{f1}〉b ∼ −(νi/ε)f1. In the 1/ν regime, which is applicable for
νi/ε > 〈vd ·∇β〉b ' ωE ≡ dΦ0/dψ0 ' (1/RBp)(dΦ0/dr) ' q (Er/rBt), trapped particles drift radially
a distance (in poloidal flux ψ0) ∆1/ν ∼ 〈vd ·∇ψ0〉b/(νi/ε) in an effective collision time ε/νi. Then, the
solution of (22) is f1/ν

1 ∼ [∆1/ν/(νi/ε)]∂fM/∂ψ0, the integrand of the energy integral in the non-ambipolar
particle flux Γna

ψ scales as E4e−E/Ti0 and we obtain Dna
1/ν ∼ D̄

na
1/νB̃

2
eff/B

2
0 , with D̄na

1/ν ∼ ε
3/2(v2

d0/νi). Here,
vd0 = Ti0/(qiBpR0) is a reference radial ion drift speed and B̃2

eff/B
2
0 is an effective magnitude of the

square of the field errors (summed over all Bmnc and Bmns components with various weighting factors
[15, 16]) whose precise definition depends on the specific collisionality regime and radial drift process.
Using the relation 〈eζ·∇·πi‖〉 = qiΓna

ψ yields the neoclassical toroidal viscous torque in the generic form

〈eζ·∇·πi‖〉 ' mini0〈R2〉µi t
B̃2

eff

B2
(Ωt − Ω∗), Ω∗ ≡ 〈〈Ω(E , θ)〉〉E =

cp + ct
qi

dTi
dψ0

, (25)

in which we used 〈I2/(R2〈B2
0〉)〉 = 1 + O{ε2} → 1. In general the toroidal viscosity frequency scales as

µi t ∼ D̄na/%2
ip in which %ip ≡ vTi/(qiBp/mi) is the ion gyroradius in the poloidal magnetic field. In the

1/ν regime the toroidal viscosity frequency scales as µ1/ν
i t ∼ ε3/2q2ω2

ti/νi in which ωti ' vTi/R0q is the
ion transit frequency. The toroidal coefficient c1/νt ' 2.4; it is larger than unity because of the E4e−E/Ti0

weighting in the integral over energy in the evalution of Γna
ψ in the 1/ν regime.

In the ν regime (νi/ε� ωE) the radial motion is limited by the “poloidal” E×B drift motion of the
banana centers: ∆ν ∼ 〈vd ·∇ψ0〉/ωE . Then, the lowest order solution of (22) is f1,0 ∼ −∆ν ∂fm/∂ψ0,
which yields no radial particle flux — because the drift motion of the ion banana centers is oscillatory
here. The next order solution is fν1,1 ∼ −(νi/ε ωE)f1,0 ∼ −[(νi/ε)/ω2

E ]〈vd ·∇ψ0〉b∂fM/∂ψ0, which leads
to a diffusion coefficient D̄na

ν ∼ νiv
2
d0/ε

1/2ω2
E , toroidal viscosity frequency µνi t ∼ (νi/ε1/2)(q ωti/ωE)2

and toroidal coefficient ct ' −0.24, which is negative because of the smaller energy weighting factor of
Ee−E/Ti0 in the energy integral involved in Γna

ψ in the ν regime. It should also be mentioned that in
the ν regime the usual analysis [15] yields a (logarithmically) divergent integral at the trapped-passing
boundary. A boundary layer analysis that scales as

√
νi has recently been developed [17] to remove this

singularity; the transport level gets modified slightly near the transition to the 1/ν regime.
Present tokamak plasma experiments often operate with νi/ε ∼ ωE , i.e., near the transition between

the 1/ν and ν collisionality regimes. Thus, it is desirable to have expressions for the NTV damping
frequency µi t and the toroidal coefficient ct that go smoothly from one regime to the other. We have
developed [16] an energy smoothing procedure similar to that developed [18] for smoothing the transition
from the banana through plateau to Pfirsch-Schlüter collisionality regime in axisymmetric neoclassical
transport theory [2, 4]. The key physical point is that since the collisional processes involved in NTV are
predominantly pitch angle scattering and the collision frequency varies dominantly as 1/E3/2, individual
ions are in the 1/ν regime if E < Ec ≡ Ti0(νi/ε ωE)2/3 and in the ν regime for E > Ec. Thus, in performing
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the energy integrals involved in determining Γna
ψ in (23), we use f1/ν

1 for E < Ec and fν1,1 for E > Ec. The
results are provided in [16].

In addition to the usually dominant banana-drift effects, transit-time magnetic pumping (TTMP)
[9, 7] causes radial non-ambipolar particle fluxes and toroidal torques that can be put into the form
given in (25). The regime of validity of the TTMP analysis [7] is (B̃‖/B0)3/2 � νi/ωti. The scalings of
the key parameters for TTMP neoclassical toroidal viscosity (NTV) processes are: reference diffusivity
D̄na

TTMP ∼ q ωti%2
ip, toroidal viscous frequency µTTMP

i t ∼ q ωti, and toroidal coefficient ct ' −0.67
In addition, a non-ambipolar particle flux [10] is produced by radial drifts of ripple-trapped ions. The

toroidal torque they cause is similar in form to (25). The standard theory for the Γna
ψ they cause [10] is

valid for νi � (B̃‖/B0)3/2Nωti in which N is the number of discrete toroidal field coils. If the toroidal
field ripple is large enough to create local magnetic field wells along the magnetic field B [i.e., if α ≡
ε sin θ/(NqB̃‖/B0) � 1], the ripple-trapped ions induce a diffusivity Dna

ripple ∼ (v2
d0/νi)G(α)(B̃‖/B0)3/2,

and µripple
i t ∼ (q2ω2

ti/νi)G(α)(B0/B̃‖)1/2, with ct ' 3.5. The function G(α) takes account of the variability
of ripple well depths. It has the properties [10] that it is unity at α = 0 but steeply decreases with α:
G(1) ' 0.05, G(2) ' 0.005. Pragmatically, while ripple trapping effects can be dominant near the plasma
edge, they are usually negligible in the core of tokamak plasmas where typically α > 1.

When the toroidal viscous force in (25) is used in (21), it tries to relax the plasma rotation not
to the laboratory frame but rather to the intrinsic toroidal rotation frequency Ω∗ — so the ion radial
non-ambipolar flux vanishes. For the usual case with a radially decreasing ion temperature profile, Ω∗ is
negative. Thus, it represents an intrinsic rotation that is usually in the “counter” direction — opposite
to the plasma current direction, as embodied in the derivative with respect to the poloidal flux ψ0. The
numerical coefficient cp + ct in the formula for the intrinsic toroidal rotation Ω∗ in (25) depends on the
specific processes that are dominant and the collisionality regime. The poloidal numerical coefficient cp
represents the effect of the poloidal ion flow V̄i·∇θ; as discussed in Section 4 above, standard axisymmetric
neoclassical theory gives cp ' 1.17 in the banana collisionality regime. The toroidal coefficient ct is
positive when hotter ions drift radially more rapidly than colder ones in the presence of an ion temperature
gradient; it ranges from −0.67 to about 2.4, depending on which non-axisymmetry process is involved.
Thus, the intrinsic toroidal rotation numerical coefficient cp + ct typically ranges from about 0.5 to 3.6.

Recent experiments on DIII-D in which large (but still ∼ δ � 1) static non-axisymmetric field errors
were deliberately applied have confirmed that [19] “The observed magnitude, direction and radial profile
of the offset rotation are consistent with neoclassical theory predictions [24].” The offset rotation referred
to is the Ω∗ defined in (25). However, neither the theory nor the experiment are currently precise enough
to determine the magnitude of the numerical coefficient cp + ct. Also, the torque exerted by the vacuum
field errors on the plasma seems a bit larger than the theoretical predictions; thus, perhaps some plasma
amplification effects [20] on the field error amplitude and spectrum [21] in the core need to be taken into
account to obtain detailed quantitative agreement on the torque induced by field errors.

7. Resonant Field Error Penetration

Next we consider the 〈eζ·J̃×B̃〉 term in (21). This toroidal torque vanishes for ideal MHD perturba-
tions throughout the hot core of tokamak plasmas [22]. However, in the vicinity of a low order rational
surface (e.g., q = 2/1) non-ideal effects (e.g., due to resistivity [22] and two-fluid diamagnetic flows [23])
can allow an externally imposed resonant field error to induce a finite parallel current J̃‖ and nonzero B̃⊥
within the thin non-ideal boundary layer around the low order rational surface. This produces a toroidal
torque 〈eζ·J̃‖×B̃⊥〉 near a rational surface in a toroidally rotating plasma. Toroidal flow inhibits pen-
etration of resonant field errors into the plasma by producing a shielding effect on the rational surface.
Above a critical field error amplitude — termed the penetration threshold — the plasma rotation can no
longer suppress the resonant torque, and plasma rotation at the rational surface rapidly (in a few ms)
locks to the wall (laboratory frame) [22]. After locking, often a magnetic island driven by the resonant
field error emerges and leads to either plasma confinement degradation or disruption.

8. Resonant Field Error Penetration With NTV

Recently, the toroidal flow damping effects of neoclassical toroidal viscosity on resonant penetration
thresholds in tokamaks have been considered [24, 25]. Unlike the localized resonant field error torque,
which tries to lock plasma rotation at the resonant surface to the wall, the NTV generates a global
torque that attempts to rotate the plasma at the rate Ω∗ which is in the “counter” (to the plasma
current) direction and depends on the ion temperature gradient, as indicated in (21) and (25) above. The
key element in analyzing resonant field error effects is to determine the radial structure of the toroidal
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flow Vt in the near vicinity of the rational surface. A model equation developed from (21) that includes
radial momentum diffusion, NTV effects and the 〈eζ·J̃‖×B̃⊥〉 effect of a resonant field error is [24, 25]

∂Vt
∂t
− χζ ∇2Vt + µi t

B̃2
eff

B2
0

(Vt − V nc
∗ ) = Fem r δ(r − rmn) + F0. (26)

Here, χζ is the (likely anomalous) toroidal momentum diffusivity, Fem represents the amplitude of the
〈eζ·J̃‖×B̃⊥〉 torque at the rational surface defined by q(rmn) = m/n and F0 represents the toroidal
momentum source 〈eζ·

∑
s Sm〉, e.g., due to NBI. The equilibrium limit of this equation is solved [24]

for Vt(r) in the vicinity of the rational surface at rmn using a WKB procedure when the NTV damping
effects are dominant in the bulk plasma outside the singular layer: Γs ≡ [r2

mnµi t(B̃
2
eff/B

2
0)/χζ ]1/2 � 1.

Adding NTV flow damping effects to a standard resonant error field penetration model [22] increases the
locking threshold for B̃2

mn/B
2
0 by a factor of Γs [24] — because the NTV tries to keep the plasma rotating

toroidally at Ω∗ outside the layer. It also predicts penetration threshold scalings for the resonant field
error B̃mn that agree better [25] with experimental mode locking results from a wide variety of ohmic-
level tokamak plasmas. A particular success of the new theory is its linear scaling with plasma density
[25] (with the caveats that τE ∝ ne and that χζ has no significant scaling with ne); previous theories [23]
had a weaker density dependence. However, detailed quantitative comparisons remain to be made.
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