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Abstract. We propose a new mechanism for edge flows in tokamaks that will also serve as
an intrinsic momentum source in systems without an up-down symmetry. An essential feature
of toroidal plasmas is that charge-dependent ∇B and curvature drifts would lead to a vertical
polarization of the discharge if it were not for the Pfirsch-Schlüter currents that neutralize the
resulting charge-separation. However, in the presence of collisions, there is a residual vertical
electric field that drives an E ×B flow in the direction of increasing major radius, regardless
of the orientation of the fields and currents. This flow is excluded from the hot core and is
localized to the more collisional edge plasma. It has many features in common with the edge
flows observed in tokamaks like C-Mod. In an up-down symmetric geometry it carries no net
toroidal angular momentum; however, its viscous interaction with asymmetric boundaries leads
to a net momentum input to the plasma. Both this momentum input, and the residual vertical
electric field, the source of these flows, may play a role in the ∇B direction-dependence of the
power threshold for the L-H transition.

1. Introduction

The tokamak edge, loosely defined in this work to be the region extending from
the foot of the pedestal inside the separatrix to the inner scrape-off layer (SOL), exhibits
flows documented nearly on all tokamaks[1–3]. While there are undoubtably a number
of different sources for these flows, here we present a fundamental mechanism that does
not seem to have drawn much attention to date.

An unavoidable feature of toroidal confinement is that charge-dependent ∇B and curva-
ture drifts, in the absence of neutralizing flows, would set up a vertical electric field, and
the resulting E×B drift would lead to an immediate loss of confinement. Of course with
finite rotational transform, this vertical polarization and the associated electric field tend
to be short-circuited by parallel currents. In a fluid model, the ∇B-dependent drifts do
not appear explicitly but are subsumed by the diamagnetic current, J⊥ = B × ∇p/B2,
while the Pfirsch-Schlüter currents, JPS, ensure charge continuity by playing the role of
a neutralizing charge flow, ∇ · (J⊥ + JPSB/B) = 0.

With collisions, this idealized picture is modified somewhat. Although the charge conti-
nuity condition above is still satisfied in steady-state, both the diamagnetic and parallel
components of the current are modified, leaving behind a residual electric field that still

drives an outward (in the direction of increasing major radius, R̂) E×B-flow. However,
since the hot core is essentially collisionless in modern tokamaks, this flow is confined to
the more collisional edge plasma. In fact, as we will see below, higher collisionality and
the presence of a pressure pedestal both play a role in this localization.

The residual electric field that results from finite collisionality points upward for a “nor-
mal” configuration of the toroidal field and current (they are both clockwise as seen from
above) and reverses direction with the toroidal field, as seen in Fig. 1. In the usual
toroidal coordinate system (r, θ, ζ), where θ is measured from the outboard mid-plane,
and ignoring any other contributions for the moment, components of the electric field are
Er = Ev sin θ, Eθ = Ev cos θ, which leads to the following poloidal flow

ur = EvBζ cos θ/B2, (1)

uθ = −EvBζ sin θ/B2. (2)
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FIG. 1: A schematic description of the flows discussed here. The solid arrows represent the
flows driven by the residual electric field due to polarization charges. The dashed arrows outside
the separatrix (the inner solid circle) are the return flows in the SOL. (a) With the toroidal field
and current in the “normal” configuration. (b) With the magnetic fields and currents reversed.
Note that the electric field reverses with the ∇B−drifts, but the toroidal and poloidal flows, both
inside and outside, do not change direction.

For the up-down symmetric system shown in Fig. 1, the flow pattern is an exact dipole
with two counter-rotating vortices localized to the edge. As it is obvious from the physics
behind them, these poloidal flows are always in the direction shown. The electric field Ev
reverses with the toroidal field Bζ but the poloidal flows retain their sign. We emphatically
disagree with Simakov et al.[4] on this point, who inexplicably insist that poloidal flows
should reverse with the toroidal field. Reversal of the toroidal current has no effect on
(ur, uθ) either. The toroidal component of the flow (labelled as uT in Fig. 1) is given by

uζ ' ErBθ/B
2 = EvBθ sin θ/B2. (3)

Note that uζ is anti-symmetric with respect to the mid-plane in the up-down symmetric
geometry of Fig. 1; thus, there is no net toroidal angular momentum contribution. Unlike
the poloidal flows, however, the toroidal flow changes sign either with the toroidal field
(which reverses Ev), or the toroidal current (which reverses Bθ), but not when both are
reversed simultaneously, as in Fig. 1. A more complete discussion of the symmetries of
these flows can be found in Refs. [5, 6].

The direction of the flows outside the separatrix are determined by a global mass conser-
vation requirement. Without the return flows, whose poloidal projection is indicated by
dashed lines in Fig. 1, one would get an accumulation of material at the outside midplane.
Thus, these are essentially parallel flows driven by a pressure gradient. With u ' u‖B/B,
in the upper half-plane uθ > 0 requires a positive u‖, which also leads to uζ > 0. Note
that although the poloidal component of the flow is anti-symmetric with respect to the
separatrix, the toroidal component is symmetric, having the same sign on both sides. At
the bottom, the parallel flow reverses, u‖ < 0, leading to uθ < 0, uζ < 0.

In this Introduction, we gave a physics overview of the flows and their general properties.
In the next section, we present a more quantitative picture and discuss numerical calcula-
tions in various magnetic topologies while making comparisons with experiments, where
appropriate.
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2. A More Quantitative Model of the Flows

A still simplified but a somewhat more quantitative picture of these flows can be obtained
by starting with the Ohm’s law

−∇φ+∇(Vlζ) = −u×B + ηJ , (4)

where Vl is the loop voltage and ζ is the usual toroidal angle. Assuming axisymmetry, we
can write B = ∇ψ × ∇ζ + F∇ζ, where ψ ≡ R2A · ∇ζ, F ≡ R2B · ∇ζ. Working in a
flux coordinate system (ψ, θ, ζ) and assuming that the flows are sub-sonic, we can use the
Grad-Shafranov equation Jζ = −∆?ψ = FF ′ +R2p′ to replace Jζ in the ζ−component of
the Ohm’s law, uψ ≡ u · ∇ψ = −ηJζ + Vl, to obtain

urad ≡ −uψ+ <uψ>= ηp′(R2− <R2>), (5)

where the brackets <> denote flux surface averages and urad represents the net flow across
a flux surface. (Because of the sign convention used for ψ, ∇ψ points radially inward,
and p′ is positive here.) Thus, there is a net radial inflow at the high-field side of the
tokamak, and a net outflow on the low-field side, in agreement with Eq. 1 above.

The amplitude of the net radial flow is proportional to resistivity (Eq. 5) and at first
glance might be expected to be trivially small. Note, however, the model describes physics
around the separatrix (near the bottom of the pedestal), not in the hot core. Secondly,
the relevant quantity is the poloidal velocity, which scales as up ∼ (a/δ)urad, where a, δ
are the minor radius and flow layer width, respectively, with a/δ � 1. It is clear from
Eq. 5 that the flows are localized to the edge pedestal region where both the collisionality
and pressure gradient are higher. This equation also makes the geometric origins of the
flows obvious; they would not exist in a straight geometry.

3. Numerical Calculations

The flows discussed above were first observed in our attempts to find quasi-equilibrium
states in the presence of various transport processes, such as viscous and resistive dis-
sipation. There were earlier discussions of these states, but not with realistic tokamak
profiles and geometries[7, 8]. The calculations use our toroidal magnetohydrodynamic
(MHD) code CTD. The exact model and some of the relevant details of our calculations
can be found in Refs. [5, 6] and the references therein. For the calculations reported
here, a slightly generalized Ohm’s law that allows for a bootstrap current contribution at
the pedestal region is used. The model is ad hoc and places a narrow Gaussian layer of
bootstrap current at the edge. Typically the amplitude is 20-30% of the current density
on axis. Along with the temperature gradient, it helps localize the flows around the sepa-
ratrix and leads to better agreement with some experimental observations. Its exact role
will be discussed in an upcoming publication.

Quasi-steady state flows found with the CTD code for lower-single-null (LSN) and upper-
single-null (USN) field geometries are shown in Fig. 2. Although the perfect dipole pattern
of Fig. 1 is retained for a symmetric double-null configuration (not shown here), the
flows are modified in an asymmetric field geometry. However, their dipole character still
survives, as seen in Fig. 2(a). Note that, of the two counter-rotating vortices mentioned
in the Introduction, the one away from the X-point expands in size at the expense of
the other. Part of this larger vortex located in the SOL is seen to connect the low-
field side of the torus to the high-field side, and eventually down (or up) to the X-point.
In this simple treatment of the divertor region, that flow enters back into the plasma
at the X-point, forming the inner half of the vortex that connects the X-point to the
outer mid-plane. In Fig. 2(b), toroidal projection of the flows are shown along a vertical
line connecting the top to the bottom of the torus approximately through its center.
Although the toroidal velocity is anti-symmetric for an up-down symmetric configuration
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like a double-null geometry (see Fig. 1 and Eq. 3), that anti-symmetry is broken by an
asymmetric field topology, as seen in the figures. Again, the portion of the flow near
the X-point gets damped through its viscous interaction with the open field lines. Thus,
some of the momentum is transferred to the vessel through the field lines, leaving behind
a net momentum input to the plasma. Toroidal momentum transferred to the plasma is
positive for LSN and negative for USN topologies, as seen in Fig. 2(b).

Radius0

0

u
ζ

Radius0

0

u
ζ

.

.

I, B

I, B

LSN

USN

(a) (b)

FIG. 2: Quasi-steady-state flows generated by the CTD code for upper and lower single-null
magnetic geometries. Magnetic fields and current are in the “normal” direction. (a) Poloidal
projections of the flows, both inside and outside the separatrix. Note that the flows retain their
dipole nature (See Fig. 1), but in these asymmetric geometries, the half of the dipole flow away
from the X-point expands at the expense of the other half. In both geometries there are strong
flows in the SOL from the low-field to the high-field side and eventually to the X-point. (b)
Toroidal projection of the flows along a vertical line passing approximately through the center
and connecting the top to the bottom of the device. Here also, the portion near the X-point of
the anti-symmetrix flow gets modified and damped through viscous dissipation, resulting in a net
momentum input to the plasma.

In Fig. 3, reproduced from a recent article by LaBombard, et al.[9], the inferred SOL
flows from various measurements on C-Mod are shown. For all field/current directions
and magnetic topologies, our results are in qualitative agreement with these experimental
observations. For the cases with the field/current in the “normal” direction, this agree-
ment is readily apparent when the SOL flows in Figs. 2 and 3 are compared. For the two
cases in Fig. 3 where the field and currents are reversed, again our results, although not
shown here, are in agreement, since the transformation B → −B,u→ +u is a symmetry
of our computational model[5, 6]. In other words, with the magnetic topology fixed in
USN or LSN configuration, reversing all currents and fields do not alter the flows in our
calculations, in apparent agreement with Fig. 3.
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Reproduced from LaBombard et al., Phys. Plasmas 15, 056106 (2008)

FIG. 3: This figure, reproduced from LaBombard et al., Phys. Plasmas, 15 056106 (2008), shows
the inferred SOL flows in C-Mod for various configurations. Note that for all combinations of
field/current directions and magnetic topologies, our results from CTD summarized in Fig. 2 are
in agreement with these experimental observations.

4. Intrinsic Momentum Source and its Effects on the L-H Transition

The momentum input to the plasma from the SOL flows and its effect on the L-H transition
power threshold has been discussed extensively by the C-Mod group (see, for example,
Ref. [2]). Here, we will simply recall the dynamical origins of these effects in our model
and examine its contribution in various field configurations using symmetry arguments.

As already discussed in previous sections, both the Ev-driven flows within the separatrix
and the parallel return flows in the SOL have an anti-symmetric toroidal component in
up-down symmetric geometries (again, see Eq. 3). But in a LSN topology, the lower
portion of this toroidal flow is damped with respect to the upper, with the lost momentum
being absorbed by the vessel. Since the intact upper portion is positive when the toroidal
field is in the “normal” direction, there will be a net positive momentum input to the
plasma. Another possibly important factor that determines the power threshold is the
direction of the residual electric field Ev. Recall that the resulting radial electric field
within the separatrix is Er = Ev sin θ, which is negative approximately below the mid-
plane (on the side with the X-point) and positive above. Assuming that this particular
direction of Ev makes the L-H transition easier, and using this LSN with the fields in
the “normal” direction as the base case, we can make the following predictions based on
symmetry arguments[5, 6].

• Reversal of the toroidal field alone will increase the power threshold, since it reverses
the toroidal flow, now resulting in a negative toroidal angular momentum input, and
also reverses Ev (and thus Er).

• Reversal of all fields, but still remaining in LSN, has no effect on the flows but
reverses Ev, thus increasing the threshold.

• Keeping the currents and fields in the “normal” direction but switching to an USN
topology will increase the threshold, since the momentum input reverses (upper,
positive part of the toroidal flow gets damped), and Ev, although still positive,
reverses direction with respect to the X-point.

• Note that these changes all lead to reversal of the ∇B-drift direction with respect
to the location of the X-point, which is known to increase the power threshold by
about a factor of two[10].
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5. Summary

We demonstrated a dynamical mechanism for driving edge flows in toroidal devices. A
residual vertical electric field that results from a balance between collisional effects and
∇B-dependent drifts at the plasma edge drives a toroidally outward flow within the
separatrix, with an accompanying return flow outside, mainly due to parallel pressure
gradients. The direction of the poloidal component of these flows is independent of the
field direction; however, there is an anti-symmetric toroidal component that reverses with
the toroidal field. In a symmetric system, there is no net toroidal angular momentum
associated with these flows. Field and boundary asymmetries, however, can lead to a
net momentum input by preferentially damping part of this anti-symmetric toroidal flow,
thus providing an intrinsic momentum source. This effect and the expected reversal of
the residual electric field Ev with the toroidal field have the right symmetry properties
to account for the increased power threshold for the L-H transition when the ∇B-drift
points away from the active X-point.
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