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Abstract. Global models are useful in the analysis of fusion reactors due to the facility in computing and 
presenting the results in terms of comprehensive parameters. A general figure of merit, which encompasses all 
the relevant tokamak parameters, is introduced in this article by a convenient normalization of the global power 
balance equation. In this way, different hypothetical tokamak reactors can be compared in terms of their figure-
of-merit value. This criterion is applied to analyze the performance of both ITER-like reactors and a class of 
newly proposed low-power reactors. 
 
1. Introduction 
A new approach to fusion power has been recently considered – to demonstrate early power 
production in a compact reactor with low first wall load [1,2]. The reduced load allows using 
presently available first wall technologies, until new materials are developed and tested by 
ITER and future component-testing facilities. However, the use of the small fusion power 
output of the pilot plant has to be optimized either by energy multiplication methods (fuel 
breeding) or in applications such as high-level waste transmutation, hydrogen production at 
high temperature, and testing of fusion nuclear technology components [3,4,5,6]. Low-aspect-
ratio tokamaks with increased toroidal field seem to be the ideal candidates for these 
applications, either by using replaceable central copper rods [5,6] or perhaps high temperature 
superconductor technology [7,8,9]. In this context the fusion hybrid is not a new idea, it was 
strongly advocated by Hans Bethe in the 70’s [10], but gets a new perspective when applied 
to low-power tokamaks using the advantages of spherical configurations. 
 
In this article the performance of low-power tokamak reactors is analyzed, considering the 
fusion power, fusion gain and average wall load. The analysis is based on a simple global 
model with the conduction and convection losses modeled by empirical scaling laws (ITER 
IPB98 scaling law in particular). The plasma model includes geometrical aspects, profiles and 
impurities effects, neoclassical effects, and stability constraints. Stability issues related to the 
toroidal beta limit, safety factor and density limit are taken into account. Then, a convenient 
normalization of the plasma temperature and density, and of the auxiliary power, is 
introduced, which leads to the definition of a figure-of-merit parameter [11]. This figure of 
merit defines the performance of tokamak reactors in a simple way. Its use allows to search 
for sets of machine parameters that satisfy the performance goal, and to classify different 
tokamaks by their figure-of-merit value. 
 
The article is organized as follows. Section 2 briefly presents the plasma model and the 
formulas used to evaluate the total power associated with radiation loss, alpha particles 
heating, and ohmic power heating, respectively. These formulas are well known and 
discussed, for example, in the Wesson book [12]. They constitute the POPCON model 
developed by many authors in the 80’s [13], and are presented for completeness and 
uniformity in the notation. In Section 3 the power balance equation is normalized and the 
figure-of-merit criterion is introduced. Section 4 illustrates the application of the figure of 
merit approach both to describe an ITER-like reactor and to analyze the performance of low-
power tokamak reactors according to the above introductory definition. 
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2. Plasma model and power balance 
The area of the poloidal cross-section Ap and the plasma volume Vp are given, to order δ2, 
respectively by 
Ap=πκa2(1-δ2/4) and Vp=2π2κR0a2[1-aδ/(4R0)- δ2/4],  
where R0 is the geometrical major radius and a is the minor radius of the plasma poloidal 
cross-section, κ is the elongation, and δ is the triangularity. Neglecting triangularity 
corrections, the plasma surface is approximately given by 
As≈4π2aR0[(1+κ2)/2]1/2 
to within 5% for 1≤κ≤3. This formula is useful for estimating the wall loading on a close wall. 
 
The radial profiles of the particle density, temperature and current density are given by the 
usual binomial expressions: n(r)=(1+αn)<n>(1-r2/ap

2)αn, 
T(r)=(1+αn+αT)(1+αn)-1<T>(1-r2/ap

2)αT and jp(r)=(1+αj)<jp>(1-r2/ap
2)αj, 

where <n>=<ne+ni>/2, <T>=<neTe+niTi>/<ne+ni> and <jp>=Ip/Ap are the volume average 
particle density, density-averaged temperature and average current density; αn, αT and αj are 
the profile peaking factors; and ap=(Ap/π)1/2 is the equivalent minor radius of the plasma 
poloidal cross-section. The cylindrical safety factor q* is defined in terms of both the toroidal 
induction B0 at the major radius R0 and the average plasma current density <jp> by 
q*=[2B0/(μ0R0<jp>)](1+κ2)/(2κ), 
and the safety factor on the magnetic axis is approximately given by q0≈q*/(1+αj). 
 
The toroidal beta is defined in terms of the total thermal energy of the plasma 
W=4.81×104<n><T>Vp=<p>Vp and the vacuum toroidal field B0 
βT=(W/Vp)/[B0

2/(2μ0)], 
while the plasma beta is defined in terms of the ratio between the average plasma pressure 
<p> and the volume averaged magnetic pressure 
β=<p>/[<B2>/(2μ0)]. 
The coefficient in the expression of the thermal energy is such that n and T are given in units 
of 1020 m-3 and keV, respectively. These units will be used throughout this article. In general, 
the maximum beta for stability is given in terms of the normalized βN value 
β≤βN[10-6Ip/(aB0)]= βN[10-6Ap/(μ0a2)][(1+κ2)/κ]ε/q*=5βN[(1+κ2)/ 2](1-δ2/4)ε/q*, 
where ε=a/R0 is the inverse aspect ratio. In the large aspect ratio limit ε→0 the magnetic field 
energy is dominated by the vacuum component and βN coincides with the Troyon factor 
gT=βT/[10-6Ip/(aB0)]<0.028 m×T/MA. 
For ideal no-wall stability βN is independent of aspect ratio and elongation (the variation on 
triangularity is within error bars) and takes an approximately constant value βN≈0.03 
m×T/MA for q*>2 and q0>1. Nevertheless, βN strongly depends on the safety factor profile 
and recent experimental results demonstrated βN≈0.057 m×T/MA, above the no-wall ideal-
stability limit, by operating with shape and resistive wall mode controls. At last, the 
Greenwald limit, both in 1020 m-3 and MA/m2 is 
nG~jG=10-6Ip/(πa2). 
 
The irreducible loss in the high-density, low-temperature regime is the total Bremsstrahlung 
power loss given, in W, by 
Pr=5.35×103grZeff<ne>2<Te>1/2Vp, 
where gr=(1+αn)3/2( 1+αn+αT)1/2( 1+2αn+αT/2)-1 is the radiation power profile factor and Zeff 
is the effective ion charge. 
 
The total power deposited by alpha particles is given by 
Pα=1.43×1027[4fD(1-fD)fDT

2fα]gα(<Ti>)<ne>2<σv>(<Ti>)Vp, 
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where fD=<nD>/<nD+nT> is the homogeneous deuterium fraction in the D-T mixture (the 
optimal value is fD=0.5), fDT=<nD+nT>/<ne> is the dilution factor, fα is the alpha-particle 
containment fraction, gα is the alpha particle profile factor and <σv> is the Maxwellian 
reactivity for the D-T reaction. Assuming an average charge state Z for the impurities, the 
condition of quasi-neutrality gives 
Zeff=Z-(Z-1)fDT-2(Z-2)<nα>/<ne> and 
<n>=[1+fDT+<nα>/<ne>+(1-fDT-2<nα>/<ne>)/Z] <ne>/2, 
where <nα>/<ne> is the fraction of alpha particles. If fDT≈1 and <nα>/<ne><<1, one has 
Zeff≈1 and <n>≈<ne>. 
In general, the reactivity must be calculated by integration over the reaction cross-section. 
However, over limited temperature ranges it is possible to use simple monomial 
approximations <σv>(T)≈CαTα in m3/s to within 10% for the reaction rate 

Cα=2.2×10-26 α=4 2.2 keV<T<5.9 keV 
Cα=1.1×10-25 α=3 4.4 keV<T<12.2 keV
Cα=1.1×10-24 α=2 8.3 keV<T<22.3 keV

Using these monomial forms the alpha heating profile factor is temperature independent 
gα=(1+αn)2( 1+2αn+ααT)-1[( 1+αn+αT)/( 1+αn)]α, 
and the total power deposited by alpha particles is estimated by 
Pα≈1.43×1027Cα[4fD(1-fD)fDT

2fα]gα<ne>2<Ti>αVp. 
The containment of alpha particles is a topic that deserves special attention, particularly in the 
case of the low-power configurations considered in this article. Considering first-orbit losses, 
the alpha particles will be effectively contained, that is fα≈1, if Ip≥5.44ε1/2(1+κ2)/ (2κ) MA. 
 
The total ohmic heating power is 
PΩ=9.61×10-10lnΛeiZeff[(2.31+Zeff)/(0.923+Zeff)]gΩgNC<jp> 

2<Te>-3/2Vp, 
where the ohmic power profile factor is 
gΩ=(1+αj)2(1+2αj-3αT/2)-1[(1+αn)/( 1+αn+αT)]3/2, 
and the neoclassical resistivity enhancement factor is given in the low-collisionality limit by 
gNC≈(1+2αj-3αT/2)∫01x2αj-3αT/2[1-fT(x)]-1[1-CZfT(x)]-1dx, 
where CZ=0.56[(3-Zeff)/(3+Zeff)]/Zeff and the fraction of trapped particles is 
fT(x)=1-[1-ε(1-x)1/2]2[1-ε2(1-x)]-1/2[1+1.46ε1/2(1-x)1/4]-1. 
The low-electron-collisionality limit is, in general, a good approximation in the reactor 
regime, though overestimating the small contribution of ohmic heating to the power balance. 
To compensate one takes lnΛei≈17. Furthermore, to simplify the calculations it is assumed that 
<ne>≈<ni>≈<n> and <Te>≈<Ti>≈<T>. 
 
The global power balance is described by the equation 
∂W/∂t=-W/τE+P, 
where W=4.81×104<n><T>Vp is the thermal plasma energy defined previously, and the 
convection and conduction power losses Pc=W/τE are given in terms of the energy 
confinement time τE. The net heating power in this equation is 
P=Pα+PΩ+Paux-Pr, 
where Pα, PΩ and Paux are the alpha, ohmic and auxiliary input powers, respectively, and Pr is 
the radiation power loss. The auxiliary power distribution depends on the type of heating 
power source. Here, the total auxiliary power is a variable to be determined. 
 
3. Normalized power balance equation and the figure of merit 
A reference temperature <T0>, which is independent of the density and corresponds to the 
threshold between alpha heating and radiation cooling, is defined by the solution of 
Pα(<n>,<T0>)=Pr(<n>,<T0>). 
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Using the monomial approximation <σv>(T)≈CαTα with 3<α<4, a simple estimate for the 
threshold temperature in keV is obtained 
<T0>≈{3.75×10-24Zeffgr[Cα4fD(1-fD)fDT

2fαgα]-1}2/(2α-1). 
This estimate is used as a start value to calculate <T0> using a precise formula of the 
reactivity. Nevertheless, a quite good estimate is obtained simply taking the average value of 
<T0> obtained with 3<α<4. 
 
Next, a reference density <n0>, corresponding to the Murakami-Hugill density limit, is 
defined by the solution of the equation 
Pr(<n0>,<T0>)=PΩ(<T0>), 
where, in general, the ohmic term is weakly dependent on the density through the Coulomb 
logarithm and the electron collisionality. Assuming constant Coulomb logarithm and 
neglecting the effect of collisions in the neoclassical resistivity enhancement factor, the 
reference density is given in 1020 m-3 simply by 
<n0>≈4.24×10-7[(2.31+Zeff)(0.923+Zeff)-1lnΛei(gΩgNC/gr)]1/2<jp>/<T0>. 
 
Finally, a dimensionless figure of merit, which is independent of Paux, is defined by 
X=Pr

1+γP(<n0>,<T0>)Pc
-1(<n0>,<T0>)P-γP(<n0>,<T0>), 

where γP is the exponent of the net heating power in the scaling law, which is assumed to be 
of the general form 
τE~CEH(10-6Ip)γIB0

γB (10-6P)γPAi
γA<n>γn<T>γTR0

γRεγεκγκ. 
In this scaling H is the H-mode enhancement factor and Ai=2.5 is the average atomic mass 
number for a 50:50 D-T mixture. Observe that this scaling law presents an explicit 
dependence on the temperature <T>. In general, the temperature is implicit in the net heating 
power dependence. In this article the dependence on <T> is maintained only to demonstrate 
the compatibility of the model with older scaling laws, prior to the introduction of the explicit 
dependence on the heating power. For the ITER IPB98(y,2) scaling, in particular, 

CE γI γB γP γA γn γT γR γε γκ 
0.145 0.93 0.15 -0.69 0.19 0.41 0 1.97 0.58 0.78 

 
Now, introducing the normalized quantities 
n =<n>/<n0> T =<T>/<T0> P =P/Pr(<n0>,<T0>) t =3Pr(<n0>,<T0>)t/W(<n0>,<T0>)
the normalized global power balance equation becomes 
∂(3nT)/∂t=n2[Σ(<T0>,T)-T1/2]+T-3/2-n1-γnT1-γTP-γP/X+Paux, 
where the normalized reactivity Σ is a relatively strong function of T, but weakly dependent of 
<T0>, defined by 
Σ(<T0>,T)= gα(<T0>T)<σv>(<T0>T)[gα(<T0>)<σv>(<T0>)]-1 
with Σ(<T0>,1)=1. If the monomial approximation of the reactivity is used, the Σ function 
becomes independent of <T0>: 
Σ(<T0>,T)≈Tα. 
In this case, the geometrical and safety factor aspects, plus all the profiles, impurities and 
neoclassical effects are singly contained in the figure of merit X . In general, the normalized 
power balance equation presents an additional weak dependence on the profiles through the 
reference temperature <T0> in Σ. 
 
The power balance equation is solved to give the auxiliary power for steady-state operation 
Paux=(n1-γnT1-γT/X)1/(1+γP)-n2[Σ(<T0>,T)-T1/2]-T-3/2. 
This expression leads to saddle-point geometry (Cordey pass) for the auxiliary power 
contours in the normalized (T,n) coordinates. The saddle point position (Ts,ns)  is determined 
solving the equations (∂Paux/∂T)s=0 and (∂Paux/∂n)s=0, which give the Cordey pass expression 
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ns=Ts
-1[3(1-γn)]1/2{(3+γn-4γT)-[4(1-γT)-2(1-γn)dlnΣ/dlnTs]Ts

-1/2 Σs}-1/2 
and a transcendental equation relating Ts to X 
Ts

3(1+γP)/2+(γn-γT)(Ts
-1/2Σs-1)-(1+γP){1-(3+γn-4γT)-1[4(1-γT)-2(1-γn)dlnΣ/dlnTs]Ts

-1/2Σs}(1+γP)-(1-γn)/2 
=[2(1-γn)-1(1+γP)]1+γP[3(3+γn-4γT)-1(1-γn)](1+γP)-(1-γn)/2X, 
where Σs=Σ(<T0>,Ts). 
Additionally taking (Paux)s=0, one defines the minimal condition for ohmic ignition, that is, 
the minimum value of X=Xi that allows a thermal excursion of the plasma from the ohmic 
(T<Ti) to the ignition (T>Ti) domains. Since the value of X depends on the machine and 
plasma parameters, it is possible to search for sets of parameters that satisfy the condition 
X≥Xi and, therefore, imply ohmic ignition capability. In general, the parameter X measures the 
tokamak performance, since the ignition margin will be larger for large values of X even 
though X<Xi. 
 
4. Application of the figure of merit concept 
Figure 1 shows a sequence of 3D plots of the normalized auxiliary power Paux as a function of 
the normalized temperature T and density n for the IPB98 scaling law (in the figures the 
normalized quantities are identified by carets). In the sequence of plots, from left to right, the 
figure of merit assumes the values X=0.823, 1.059 and 1.104. The same sequence is shown in 
Fig. 2, in the form of contour plots. 
 

 
Fig. 1. 3D plots of the normalized auxiliary power as a function of the normalized temperature and density. The 
figure of merit is X=0.823, 1.059 and 1.104, from left to right. The low point in each plot indicates the transition, 
on the Cordey pass, from the ohmic to the auxiliary heated domains. The high point in the middle frame 
indicates a possible ITER-like operating condition for 500 MW of fusion power production. 
 

 
Fig. 2. Power contours corresponding to Fig. 1. The vertical line at T=1 corresponds to the condition Pα=Pr and 
the dashed line to the condition PΩ=Pr. The thick line shows the Cordey pass. 
 
The figure of merit X=0.823, represented in the leftmost frames of Figs. 1 and 2, is interesting 
because the point of equilibrium Paux=0 on the Cordey pass occurs exactly at the reference 
temperature T0=1. The middle frames in Figs. 1 and 2 correspond to the figure of merit 
X=1.059, calculated for an ITER-like reactor with the reference temperature and density 
<T0>=4.92 keV and <n0>=0.531×1020 m-3, respectively. The auxiliary power in this case is 
normalized by the total radiated power Pr(<T0>,<n0>)=5.63 MW, and the point in the upper-
right quadrant represents the operational conditions <T>=8.85 keV, <n>=0.891×1020 m-3 
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and Paux=11.2 MW, giving Pfusion=500 MW and τE=3.7 s. Finally, the rightmost frames 
correspond to the ohmic ignition condition with Xi=1.104. 
The path along the Cordey pass, or saddle point trajectory, gives the conditions for minimum 
auxiliary power use on the way to ignition. Figure 3 shows, on the left-hand side, the saddle 
point trajectory in the normalized density versus temperature space for the IPB98 scaling law. 
For each figure of merit X there corresponds one saddle point location along the path. On the 
right-hand side of Fig. 3 it is shown how the temperature and density change along the saddle 
point trajectory as a function of the figure of merit X. Ohmic ignition is indicated in both plots 
of Fig. 3 by the point Xi=1.104. 
 

Fig. 3. The left-hand side plot shows the saddle point trajectory in the normalized density versus temperature 
space for the IPB98 scaling law, fixed reference temperature <T0>=4.92 keV, and arbitrary X value. The point 
indicates ohmic ignition conditions for X=1.104. The thick line corresponds to the exact reactivity calculations 
and the thin lines show the passes obtained using the monomial approximation of the D-T reactivity with α=3 
and 2 (a bad approximation in this case). The right-hand side plot displays the saddle point temperature and 
density as a function of X. This plot shows that ignition becomes unattainable for the assumed reference 
temperature and X less than about 1.08 because of density limits. 
 
The various power contributions can be determined along the favorable Cordey pass for a 
given scaling law, reference temperature <T0> and value of the figure of merit X . Actually, 
the dependence on the reference temperature, which is determined by Zeff, αn, αT and fα, is 
rather weak for usual cases. Essentially, it is the value of X that defines the machine 
performance. Figure 4 shows the normalized alpha, ohmic, radiation and auxiliary power 
contributions along the pass. Figure 5 shows the fusion gain, normalized fusion power, 
auxiliary power, and total power deposited on the wall for different operating points along the 
pass. In both figures the normalized temperature varies from the minimum value Ts which 
corresponds to Paux=0 to the maximum value Ts=1.696 where ns→∞. The sequence in Fig. 4 
shows how the performance changes from a driven ITER-like reactor, with X=1.059 and high 
fusion power output, to an ohmic tokamak with X<0.6 and relatively low fusion output. For 
comparison, JET has a figure of merit X~0.44. Figure 5 illustrates the same transition in 
performance, emphasizing the fusion gain Q variation (note the change in the vertical scale). 
 
An examination of the figures, in particular Fig. 5, indicates that a figure of merit X=0.6 or 
slightly above is adequate for low power reactors, giving 1<Q<3 with moderate levels of 
auxiliary heating power. A reactor with X~0.4 (CTF [6] has X~0.36) and low values of Q is 
also possible, but the plasma will be more like a target for large amounts of auxiliary heating 
power by neutral beams. Anyway, for nuclear components testing, transmutation and fuel 
production a strongly driven operation with Q<1 is acceptable. 
 
Starting from a chosen value of X, it is possible to search for sets of machine parameters that 
satisfy the performance goal. For example, consider low-power tokamak reactors with a 
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figure of merit X=0.6 producing 25 MW of fusion power, 500 kW/m2 of wall loading on a 
close wall and operating along the Cordey pass. 
 

 

 

 
Fig 4. Normalized alpha power (thick line), ohmic power (thin line), radiation power (dashed line), and 
auxiliary power (dotted line) along the Cordey pass shown in Fig. 3 for fixed reference temperature 
<T0>=4.92 keV and varying figure of merit X. 

 
Fig. 5. Fusion gain (thick line), fusion power (thin line), auxiliary power (dashed line), and total power 
deposited on the wall (dotted line) following the saddle point trajectory shown in Fig. 3 for fixed reference 
temperature <T0>=4.92 keV and varying figure of merit X.
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Table 1. Main parameters of possible low-power tokamak reactors. 
A a (m) B0 (T) Ip (MA) q* T (keV) n20 (1020 m-3) nG (1020 m-3) Q 

1.6 1.12 2.1 12.7 2.01 3.34 2.79 3.21 2.60
2.0 0.935 3.6 10.0 2.01 5.89 1.33 3.65 1.24

 
The normalized fusion power is 
Pf=(En/Eα+1)Pα/fα 
and the normalized total power deposited on the wall is given by 
Pwall=(En/Eα+1-fα)Pα/fα+Pc+Pr, 
where En=14.03 MeV and Eα=3.561 MeV refer to the energy of the neutrons and alpha 
particles in the D-T fusion cycle. The close wall surface is simply taken equal to the plasma 
surface As. Assuming IPB98 scaling law with H=1, and taking αn=1, αT=1/2, αj=3αT/2 
(profile consistency), Zeff=1.5, κ=2.5 and δ=0.4, Table 1 lists possible sets of parameters that 
satisfy the requirements for aspect ratios A=1.6 and 2.0. These results indicate that low-power 
reactors with minor radius a~1 m, magnetic fields in the 2 to 3 T range and 1<Q<3 are 
feasible. With the new scaling laws obtained for low aspect ratio tokamaks [14] similar results 
can be obtained with about half the plasma current, lower densities and higher temperatures. 
 
Acknowledgement. This work was partially supported by the International Atomic Energy 
Agency under the Co-ordinated Research Project on Joint Research Using Small Tokamaks – 
IAEA contract No. BRA/12932. 
 
[1] Wu, Y. et al 2006 “Conceptual design of the fusion-driven subcritical system FDS-I” 
Fusion Eng. Des. 81 1305-1311 
[2] Galvão, R.M.O. et al 2008 “Multi-functional Compact Tokamak Reactor Concept” paper 
FT/P3-20 this conference 
[3] Stacey, W.M. et al 2005 “A subcritical, gas-cooled fast transmutation reactor with a fusion 
neutron source” Nucl. Technol. 150 162-188 
[4] Wu,Y., FDS Team 2006 “Conceptual design activities of FDS series fusion power plants 
in China” Fusion Eng. Des. 81 2713-2718 
[5] Peng, Y-K.M. et al 2005 “A component test facility based on the spherical tokamak” 
Plasma Phys. Control. Fusion 47 B263-B283 
[6] Voss, G. et al 2008 “Conceptual design of a component test facility based on the spherical 
tokamak” Fusion Eng. Des. In press 
[7] Tobita, K. et al 2007 “SlimCS – compact low aspect ratio DEMO reactor with reduced-
size central solenoid” Nucl. Fusion 47 892-899 
[8] Tobita, K. 2008 “A view on DEMO and its superconducting magnet” First Meeting on the 
Use of HTS in Tokamaks, ASIPP, Hefei, Anhui, P.R. China, 20-22 February, 2008 
[9] Gryaznevich, M. 2008 “Use of high temperature superconductors in tokamaks, 
Introduction” Ibid 
[10] Bethe, H.A. 1979 “The fusion hybrid” Phys. Today, May 1979 
[11] Ludwig, G.O. and Montes, A. 1990 “Ohmic ignition of small aspect ratio tokamaks”. In 
A Variety of Plasmas (eds.: Sen, A.; Kaw, P.K.), Proceedings of the 1989 International 
Conference on Plasma Physics (New Delhi, 1989) (Bangalore: Indian Academy of Sciences, 
ISBN-019-562892-6) pp. 489-497 
[12] Wesson, J. 2004 Tokamaks (Oxford: Clarendon Press, 2004) 
[13] Uckan, N.A. and Sheffield, J. 1986 “A simple procedure for establishing ignition 
conditions in tokamaks”. In Tokamak Startup (ed. Knoepfel, H.)(New York: Plenum Press, 
1986) pp 45-72 
[14] Valovič, M. et al 2008 “Confinement and fuelling in MAST” paper EX/P5-17 this 
conference 


