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                                                 Abstract 
 
  A derivation of symmetry breaking toroidicity effects on toroidal momentum transport 
has been made from the stress tensor. This effect is usually stronger than the symmetry 
beaking caused by the flows themselves on the eigenfunction. The model obtained 
generalizes a recent derivation of diagonal transport elements1 from the stress tensor to 
convective elements of turbulent equipartition or thermoelectric types. This gives 
possibility for interpretation of the same type of effects previously obtained from a phase 
space conserving nonlinear  gyrokinetic equation2,3. 
 
 



1. Introduction 

The present interest in momentum transport1-8 has recently focused on symmetry 
breaking effects2, 4,7 on toroidal momentum transport.  The first effect of this type was 
identified, as the effect of an asymmetric eigen- function on the average of the parallel 
mode number is needed of the parallel momentum transport. For practical purposes we 
may approximate the toroidal momentum by the parallel momentum. Recently also 
symmetry breaking effects of toroidicity were found7.  For an improved understanding of 
such effects and for a consistent derivation of fluid equations for momentum transport it 
is highly desirable to also make the fluid derivation of such effects. Since the magnetic 
drift is not a fluid drift such effects originates from the stress tensor in fluid equations. 
We are thus faced with the rather complicated task of including magnetic curvature 
effects from the stress tensor. On the other hand gyrokinetic derivations have to start 
from a phase space conserving formulation9 of the gyrokinetic equation. Thus quite 
ambitions approaches are needed both in gyrokinetic7, 8 and in fluid derivations. The fluid 
derivation is, however, more straight forward, showing the strength of fluid theory in 
deriving the advanced dynamic equations. The stress tensor is important mainly for low 
frequency phenomena in magnetized plasmas. It was already used for deriving the 
diagonal magnetic drift terms10.  In the collisionless case stress tensor contributions are 
associated with finite gyroradius effects for the motion perpendicular to the magnetic 
field. Here the first results included the gyro viscous cancellations11, 12 between 
convective diamagnetic effects. At this time also kinetic calculations for drift and MHD 
type modes had just started and full Vlasov descriptions with simplified geometry were 
used11. The agreement for the lowest order FLR effect between fluid and kinetic 
derivations11, 12 could thus be regarded as a significant achievement at this time. While 
the FLR effect, for the perpendicular motion is obtained through an expansion in the ratio 
of characteristic mode frequency and cyclotron frequency, and thus usually treated as 
small, the toroidal effects from the stress tensor enter as order ( / )n nL Rε  in the parallel 
momentum equation. Although nε can be treated small in the edge and it is typically of 
order 1 in the core. Thus this effect is important for the parallel motion. A simpler way to 
obtain the  diagonal curvature effects is to derive equations of motion for guiding centers 
(gyro fluid equation). Such equations have magnetic drifts included as guiding center 
drifts and the equation of motion can be obtained by taking moments of a gyro kinetic 
equation12. The diagonal curvature terms then appear as due to a convective magnetic 
drift (sum of gardB

r
 and curvature terms) with a factor 2 as a convection of parallel 

momentum flow. In the present work we will start from the Braginsk ii fluid equation and 
derive symmetry breaking effects corresponding to  Ref. 7, using entirely fluid equations 
for the toroidal ion temperature gradient mode (ITG).  

 

II. Toroidal momentum flow 

 
The general momentum equation is obtained from ion and electron momentum equations 
and the continuity equation: 
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Here iπr  is the ion stress tensor given by Braginskii7 (see appendix) and nS is the density 

source term. We use the generalized co-ordinate system ( nbp ˆ,ˆ,ˆ ) which is tied to the 

magnetic field. Here BBn /ˆ
r

= is the unit vector along the magnetic field lines, p̂  is 

orthogonal to the magnetic surface, and pnb ˆˆˆ ×= . The co-ordinates basic ( nbp ˆ,ˆ,ˆ ) are 
related to the flux co-ordinates  ( φχψ ,, ), where ψ  is the poloidal magnetic flux, χ  the 
generalized poloidal angle and φ  is the toroidal angle. Both co-ordinates system are 
related as 
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For large aspect ratio ( / 1r Rε = << ) and toroidal symmetry (i.e., 0/ ≡∂∂ φ ), the 
differential operators can be written as: 
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Here χφψ Bhh /1= , χχ JBh = , φχψ hhhJ = , the Jacobian of the transformation 

( φχψ ,,→r
r

), χφχφφχν RBrBBhBh /~/= , the pitch of the field lines, ∫= χν dq , the 

safety factor and for large aspect ratio ( 0/ 1r Rε = < ), )cos1(0 χεφ += Rh  and 

)cos1(0 χεφφ −= BB , where r  and 0R  the minor and major radii, respectively.  
The sum of toroidal components of the Eqs (1a) and (1b) can be written as: 
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Where the last term corresponds to the radial angular momentum flux driven by 
background turbulence and ˆ 0ie Pφ ⋅∇ = .  



For toroidal symmetry (i.e., 0/ ≡∂∂ φ ), the convective term in Eq. (8) can be expressed 
as: 
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By using Eq. (5) and the continuity equation, the total derivative of momentum density – 
the left hand side of Eq. (4) can be expressed as: 
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Here we have made use of a tensorial relation φφφ hee lnˆˆ ∇−=∇
rr
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 and nS is the particle source term.  

Note from Appendix A, the definition of iπt  is of the form iπ αβ βα= +
r rr rt

, the stress force 
along toroidal direction can easily be expressed as: 
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We consider that plasma is in the collisionless regime ( / 1i iqR cν < , iν  is the ion collision 

frequency). We now collect only ψφπt  and χφπt  from the collisionless stress tensor in 
Appendix A. 
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where  nn ))r
)( ∇⋅=κ Here / 1B Bχ <  is assumed and iii P Ω= 2/,3η , ii 12 4ηη = . Again in 

the low β  and large aspect ratio limit, the term ˆ ( )ieφ π⋅ ∇ ⋅
r t

 now can be expressed as :   
                                           (8) 
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and analogously for p) . 

By using equations (6) and (8) in equation (4), the toroidal momentum equation can now 
be expressed as   
 

                                                                                                                           (9)     

 

 

We now first derive the linear parallel ion velocity perturbation from Eq.(9). In the limit 
1nk L⊥ >>  (k⊥  is the perpendicular wave vector of background instability), and by taking 

perturbations 0F F fδ= +  [ 0 ( )F r and fδ  are the background equilibrium and 
perturbation, respectively], the linear form of Eq. (9) can be expressed as:   
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In Eq (10) the curvature term involving φ∇  corresponds to turbulent equipartition (TEP) 
The curvature term involving pδ∇ has two parts where the temperature perturation part 
corresponds to the thermoelectric convective term. If we assume Boltzmann electrons 
and quasineutrality we can rewrite (10) as: 
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Thus now the density perturbation part adds up to the TEP part  and we recover the 
Coriolis pinch of Ref 8 after substituting uδ into the flux >=<Γ uδφ Erv . We here 

have only a factor 2 since our UD includes a factor 2 making it equivalent to the total 
magnetic drift for low ß. This part can also be recovered from Ref 9 where, however, 
more effort was made to separate curvature and grad B parts as well as including 
temperature anisotropy.  The original TEP part comes from the convective inertial term, 
i.e. the term in brackets in Eq 9.  We note from the way Eq. (10) was written that the 
toroidal curvature effect adds up as a new symmetry breaking effect to the parallel 
gradient. This increases substantially the effect of flowshear. We can now formally 
generalize the eigenvalue solution in Ref. 18 by adding the new symmetry breaking term 
to the parallel gradient. However, also the symmetry point in the radial direction will be 
shifted due to the toroidicity. From Eq. (9), the equation for mean toroidal velocity can be 
obtained by averaging over magnetic flux surfaces. In the large aspect ratio  limit, the 
equation for mean Uφ  can be written: 
 

 

                                                                                                                                 (11) 

In deriving Eq (11) we kept only curvature terms from the stress tensor. We note that we 
have contributions both from the Reynolds stress (inertial part) and from the stress tensor. 
 

 

 

 



APPENDIX A:  THE STRESS TENSORS ( iπt ) 

In the limit 1/ <<Ω iiν , the stress tensor7 can be split into three parts  
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                                                                                            (A1) 

The parallel stress tensor or diagonal matrix ( i0πt ), the gyro-stress tensor ( i,43−π
t

) and the 

perpendicular stress tensor ( i,21−π
t ) are given as8 

The parallel stress tensor:  
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The gyro stress tensor: 
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The perpendicular stress tensor: 
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where 1
,0 96.0 −= iii Pνη , the index 3-4 and 1-2 refer to Braginskii’s coefficients7 

iii P Ω= 2/,3η , 2
1 10/3 iiii P Ω= νη , ii 12 4ηη =  and ii 34 2η=η .   
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