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Abstract. Turbulent and neoclassical transport in a reference hybrid-mode ITER plasmas is
studied using a hierarchy of modeling tools. Transport from ITG/TEM instability is studied
with nonlinear gyrokinetic simulations and compared with results from quasilinear fluid and
gyro-Landau fluid models. Simulations include full kinetic ion and electron dynamics, although
a pure-D mixture is assumed for the bulk ions. We perform the comparison over the full region
interior to the pedestal, and derive all simulation parameters from the reference profiles. These
comparisons form the starting point for future predictive modeling using direct gyrokinetic
simulations. For reference, neoclassical transport of particles and energy is also computed using
a new first-principles kinetic code with an advanced multi-species collision operator. Both
quasilinear models tend to stay roughly within a factor of two of the reference gyrokinetic
simulations, which is remarkable given that they are at least four orders of magnitude faster
than direct nonlinear simulation.

1. Introduction

Current performance predictions for ITER are based on transport modeling using reduced
models for the core thermal and particle transport. The reasoning is that, for both the
neoclassical and turbulent contributions to the transport, the fundamental equations are
far too expensive to simulate via nonlinear gyrokinetics when a steady-state solution is
sought. Thus, improved performance modeling for ITER will require either more accurate
reduced models or direct gyrokinetic (and neoclassical) simulation. The purpose of the
present work is to begin moving in the direction of direct kinetic simulation for predictive
modeling. This is still an enormously formidable prospect, mainly because the cost of di-
rect nonlinear gyrokinetic simulation is at least four orders of magnitude higher than even
the most complex of reduced models. Thus, to start with, we need to leverage reduced
transport models as much as possible in a direct approach to modeling. Recently a new
reduced model, TGLF, has been developed [1, 2] and incorporates various improvements
over its predecessor, GLF23 [3]. In this work we compare the transport coefficients ob-
tained from GYRO [4], TGLF [1] and a quasilinear fluid model (which we denote here as
QFM) [5, 6] for realistic ITER profiles. The practical intent of this comparison is to gauge
the accuracy limitations of TGLF and QFM in comparison to the more fundamental (and
expensive) nonlinear simulations.

GYRO is a nonlinear gyrokinetic code with both local and global operational modes.
It has electromagnetic capability, plasma shaping effects via Miller geometry, pitch-angle
collisions and can simulate a full or partial torus. It has been in full production use since
about 2003. TGLF is a theory-based quasilinear transport model which uses 12 moments
for passing particles and 3 for trapped particles. The closure coefficients depend on the
trapped fraction, making TGLF significantly more complicated than GLF23 [3]. Finally,
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FIG. 1. ITER reference (a) density and (b) temperature profiles.

in the QFM model a set of fluid equations is used to compute the turbulent particle
and energy fluxes. The model considers moment equations for perturbations in density,
parallel velocity and pressure for ions, impurities and trapped electrons. The quasilinear
expressions for the fluxes in QFM are derived by fixing the spatial scale of the turbulence
by choosing krρs = kθρs = 0.2, and an eigenvalue equation is solved for the general mode
width (see Ref. [5] and references therein). Results from TGLF and QFM do not require
massive computational resources, and are therefore more convenient for parameter scans
and for profile prediction purposes.

2. Simulation Methodology

In the past, GYRO-TGLF comparisons have been reported [2] as have GYRO-QFM
comparisons [5]. This is the first work to make a collective comparison, and to focus on
reactor-relevant parameters over the entire minor radius inside the pedestal. The GYRO
[4] simulations discussed herein used a (Lx, Ly)/ρs = (128, 96) perpendicular domain
with 128 velocity-space points, 180 radial gridpoints and 16 complex toroidal modes,
and 10/20 points per passing/trapped orbit. The wavenumber range resolved was 0 ≤
kθρs ≤ 1, which is about 25% higher than “standard” ITG/TEM resolution, but still
neglects a possible high-k contribution from ETG turbulence [7]. Kinetic electron and
plasma shaping effects were retained in all simulations, but only the Poisson equation
was solved, threreby limiting the fluctuations to electrostatic. The same physics (kinetic
electrons, shape, electrostatic, etc) was retained in TGLF, whereas QFM results are based
on circular geometry. Collisional effects were also neglected in all turbulent transport
calculations. Simulation parameters are derived from ITER reference profiles [8] used in
previous GYRO comparisons with QFM [5]. This is a hybrid scenario obtained with the
ASTRA code using a 12 MA plasma current, a 5.2 T magnetic field, a 6.2 m major and 2 m
minor radius. The temperature and density profiles are plotted in Fig. 1, with additional
local dimensionless parameters (required for code input) summarized in Tables 1 and 2.
Especially in the region r/a < 0.5, these parameters give rise to transport which is closer
to threshold than that normally studied in parameter scans (see Ref. [9], for example).
In Table 1, r is the midplane minor radius, q is the safety factor, s is the magnetic shear,
κ is the elongation, sκ

.
= (r/κ)dκ/dr, δ is the triangularity, sδ = rdδ/dr and ∆ is the
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Table 1. Local geometrical parameters for ITER reference equilibrium

r q s κ sκ δ sδ ∆

0 1.006 0.023 1.416 0 0 0 0
0.1 1.045 -0.027 1.422 0.001 0.008 0.031 -0.265
0.2 1.031 -0.01 1.418 -0.005 0.028 0.073 -0.256
0.3 1.011 -0.08 1.413 -0.015 0.036 -0.012 -0.241
0.4 1.016 0.2 1.409 -0.005 0.048 0.09 -0.222
0.5 1.113 0.664 1.412 0.026 0.051 0.001 -0.2
0.6 1.314 1.182 1.426 0.095 0.077 0.204 -0.172
0.7 1.643 1.746 1.458 0.196 0.108 0.078 -0.139
0.8 2.166 2.452 1.511 0.372 0.152 0.867 -0.099
0.9 3.08 3.771 1.604 0.723 0.235 1.603 -0.052

Table 2. Local profile parameters for ITER reference equilibrium

r nC/ne Ti/Te a/Lne a/LnC a/LTe a/LT i Bunit (a/cs)τ
−1

ei

0 0.021 0.865 0 0 0 0 7.106 0.0018
0.1 0.021 0.862 0.008 0.023 0.552 0.608 7.136 0.0019
0.2 0.021 0.857 0.016 0.019 1.104 1.166 7.124 0.0022
0.3 0.021 0.852 0.024 0.031 1.647 1.675 7.142 0.0028
0.4 0.021 0.855 0.038 0.031 2.23 2.135 7.15 0.0041
0.5 0.021 0.869 0.05 0.064 2.789 2.535 7.412 0.0067
0.6 0.021 0.897 0.076 0.085 3.247 2.902 7.781 0.0120
0.7 0.021 0.932 0.149 0.158 3.661 3.3 8.625 0.0232
0.8 0.021 0.961 0.362 0.377 4.017 3.78 9.598 0.0478
0.9 0.021 0.981 1.129 1.125 4.796 4.548 11.738 0.1039

Shafranov shift. In Table 2, Bunit is the effective magnetic field and τ−1

ei is the electron-ion
collision rate (for reference, the latter quantities are defined in Ref. [10]). We define two
variations of the ITER scenario: first the “baseline” (B) case, which neglects impurities
and sets ni equal to ne, and second, the “impurity” (I) case which retains the finite carbon
(Z = 6, A = 12) fraction, nC .

We also remark that the local GYRO [4] simulations reported here were carried out
using the TGYRO transport manager, which automates, compresses and summarizes an
entire radial scan over (in this case) 9 distinct radial locations, r = (0.1, 0.2, . . . , 0.9), into
a single TGYRO simulation. Such a scan, with three kinetic species (electrons, deuterium
and carbon), took only 14 hours on 1152 cores of the ORNL Cray XT4.

For neoclassical fluxes, we show results derived from the newly-developed NEO code
[10], which performs a direct solution of the fundamental drift-kinetic equation using the
zeroth-order Hirshman-Sigmar (HS0) collision operator [11]. We have used the HS0 oper-
ator rather than the full operator since only the former behaves correctly when Te 6= Ti.
Although neoclassical transport in ITER is relatively weak owing to the low collisionality,
the neoclassical ion energy flux will nevertheless have some effect on the shape of the
modeled ion and impurity profiles near the magnetic axis (in the case where no additional
physics, such as sawtooth mixing, is considered).
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FIG. 2. Electron and ion (a) energy and (b) particle fluxes for baseline (black) and high-
resolution (magenta) GYRO simulations. This demonstrates that the GYRO simulations are
insensitive to increased velocity-space resolution. Note that all particle fluxes are equal in part
(b) as a consequence of quasineutrality.

3. Results

First, as a check on GYRO convergence, we ran standard (B) and high-resolution (H)
variants of the baseline case. In comparison to B, the H-case has 1.6 times the poloidal
resolution, and 1.875 times the velocity-space resolution, for a total factor of 3 increase in
resolution. The result, shown in Fig. 2, indicates that GYRO is sufficiently well-converged
at the given spatial domain size and wavenumber resolution. In what follows, we give a
complete breakdown of the matrix of transport coefficients in physical, rather than local
gyroBohm (GB), units. We will discuss the implications of this choice of normalization
later.

In the most important channels, the ion and electron energy flux, we observe very
good agreement between TGLF and GYRO at outer radii, but a significant discrepancy
at inner radii, as shown in Fig. 3. The QFM curves in Fig. 3 show resonable agreement
with GYRO at outer radii, yet manage to reproduce the transition to low transport at
inner radii. The same trends are observed in the carbon and total energy fluxes plotted in
Fig. 4. In the case of particle fluxes, as shown in Fig. 5, again TGLF matches well at outer
radii, but significantly overpredicts at interior radii. While QFM uniformly underpredicts
the tranport, it more closely matches the qualitative shape of the transport tail at inner
radii. This is in some sense accidental considering that plasma shaping effects are absent
from QFM. We remark also that the simulated per-particle carbon particle and energy
fluxes are roughly the same as for the primary ions in all cases.

A unique feature of these results is that the parameter regime defined by the ASTRA
equilibrium is significantly closer to threshold than what is normally chosen for gyrokinetic
parameter scans. This perhaps magnifies the difficulty of matching GYRO results with a
quasilinear model, particularly in the region r/a < 0.5 where the onset of a Dimits shift
(i.e., a flow-dominated regime) appears as the profiles flatten and the plasma approaches
marginal stability. Needless to say, more comparisons are required to further clarify these
issues.

A useful measure of the overall agreement is obtained by computing the volume average
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FIG. 3. (a) Ion and (b) electron energy flux for GYRO (black), TGLF (blue) and QFM (red).
The baseline case (solid curves) and impurity case (dashed curves) are also compared.
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FIG. 4. (a) Carbon and (b) total energy flux for GYRO (black), TGLF (blue) and QFM (red).
The baseline case (solid curves) and impurity case (dashed curves) are also compared.

Table 3. Volume-averaged accuracy of reduced models

x = QFM x = TGLF
〈Γx

i 〉/〈Γ
GYRO
i 〉 0.63 1.39

〈Γx
C〉/〈Γ

GYRO

C 〉 0.87 1.69
〈Γx

e〉/〈Γ
GYRO

e 〉 0.65 1.41
〈Qx

i 〉/〈Q
GYRO
i 〉 0.63 0.58

〈Qx
C〉/〈Q

GYRO

C 〉 0.46 1.18
〈Qx

e〉/〈Q
GYRO

e 〉 1.43 1.94
〈Qx

tot
〉/〈QGYRO

tot
〉 0.80 0.89



6 TH/P8-28

0

1

2

3

4

5

6

−
Γ

i
(1

02
0
/m

2
/s

)

0.1 0.3 0.5 0.7 0.9
r/a

GYRO-B
GYRO-I
TGLF-B
TGLF-I
QFM-B
QFM-I

(a)

0

1

2

3

4

5

6

−
(n

e
/n

C
)Γ

C
(1

02
0
/m

2
/s

)

0.1 0.3 0.5 0.7 0.9
r/a

GYRO-I
TGLF-I
QFM-I

(b)

FIG. 5. (a) Ion and (b) carbon particle fluxes for GYRO (black), TGLF (blue) and QFM (red).
The baseline case (solid curves) and impurity case (dashed curves) are also compared. Electron
particle fluxes are not shown since they follow directly from quasineutrality.

of the fluxes

〈Qσ〉
.
=

∫
dr r Qσ(r)
∫

dr r
and 〈Γσ〉

.
=

∫
dr r Γσ(r)
∫

dr r
, (1)

where σ is the species index. Taking ratios thus yields a single number indicative of the
closeness to the reference gyrokinetic value; such ratios are tabulated in Table 3

Although, to this point, we have expressed all results in physical units, gyrokinetic
simulation results are more commonly expressed in local gyroBohm units

χGB = ρ2

scs/a , QGB = ne(kTe)cs(ρs/a)2 and ΓGB = necs(ρs/a)2 , (2)

since the gyrokinetic equations are intrinsically gyroBohm-scaled. Because the gyroBohm
factor varies significantly over the minor radius, curves plotted in gyroBohm units look
rather different than curves plotted in physical units. For example, in Fig. 6, curves
of the normalized energy diffusivity, χi/χGB, peak strongly towards the plasma edge.
Also apparent is that the sub-GB regime for electrons encompasses a significant fraction
(r/a ≤ 0.5) of the minor radius. In the sub-GB region, the standard quasilinear approach,
which does not account for the nonlinear upshift (Dimits shift), is expected to overpredict
the transport. This is indeed what is presently observed for TGLF. Also, QFM does a
remarkably good job of matching the reference gyrokinetic simulations, despite a signif-
icant number of approximations. Note that in QFM a fixed scale for the turbulence is
used whereas the nonlinear kinetic results indicate a shift of the peak of the transport
spectrum towards lower mode numbers for increasing values of q, mainly due to Landau
resonances, as illustrated in Fig. 7 for GYRO.

Finally, for completeness, we summarize the neoclassical transport coefficients in
Fig. 8. These results were obtained by direct kinetic simulation with NEO [10] using
a 3 × 3 collision operator with full electron-deuterium-carbon exchange terms. As ex-
pected, the neoclassical transport levels are about two order of magnitude lower than the
corresponding turbulent levels.
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FIG. 6. (a) Ion and (b) electron energy diffusivities for GYRO (black), TGLF (blue) and QFM
(red).
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FIG. 7. Wavenumber dependence of (a) ion and (b) electron energy diffusivities for GYRO over
the domain 0.1 ≤ r/a ≤ 0.9.
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FIG. 8. Neoclassical (a) energy and (b) particle fluxes calculated with the NEO code using a
complete cross-species collision operator.
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