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Abstract Quasilinear transport fluxes driven by microinstabilites in weakly-collisional toka-

mak plasmas are calculated by a semi-analytical approach based on a solution of the gyrokinetic

equation, where collisions are modelled by a Lorentz operator. Scalings with collisionality, mag-

netic drift frequency, diamagnetic frequency and ratio of the density and temperature scale

lengths have been determined. The particle transport due to ion temperature gradient (ITG)

modes can be reversed from inward to outward as electron collisions are introduced, if the plasma

is far from marginal stability. However, if the plasma is close to marginal stability, collisions may

even enhance the inward transport. Comparison with transport fluxes calculated when collisions

are modelled by an energy-dependent Krook operator shows that the sign and the magnitude of

the fluxes are very sensitive to the form of the collision operator.

1. Introduction

Turbulent transport in tokamak plasmas is considered to be mainly caused by drift waves
destabilized by trapped electrons and ion temperature gradients. These microinstabilities
and their effect on the transport can be studied by complex nonlinear gyrokinetic codes,
for example GYRO [1]. To ease the interpretation of the results of these codes and experi-
mental results it is useful to construct simpler models that can, after careful benchmarking
with codes, give various parametric scalings. In particular, the collisionality dependence
of the microinstabilities is interesting from both experimental and theoretical point of
view. On the experimental side, the evolution of the density profile has been shown to
depend on the collisionality. On the theoretical side, it has been shown that the transport
fluxes are dependent on the choice of the collision operator.

Numerical simulations of ion temperature gradient (ITG) and trapped electron (TE)
modes have shown that collisions may influence the sign and magnitude of the quasilinear
fluxes driven by these instabilities [2]. In the collisionless limit, numerical simulations of
ITG-mode driven turbulence give an inward particle flux, both in fluid, gyrofluid and gy-
rokinetic descriptions. However, nonlinear gyrokinetic calculations show that even a small
value of the collisionality affects strongly the magnitude and sign of the anomalous parti-
cle flows. The inward particle flow obtained in the collisionless limit is rapidly converted
to outward flow as electron-ion collisions are introduced. The particle flux is expected to
change sign for very small collisionalities, much smaller than the collisionality achievable
in current tokamak experiments. The choice of the model collision operator affects the
collisionality threshold for the reversal of the particle flux [3]. This means that collision-
less models or models using the Krook model operator are not adequate to calculate the
quasilinear transport fluxes for typical experimental parameters. Also for TE-modes, the
quasilinear fluxes depend on collisions, and the effect of collisions is different if they are
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modeled by the Lorentz operator than if they are modeled with the Krook operator.

The aim of the present work is to develop a collisional model for electrostatic turbulence
that makes it possible to derive analytical expressions for the quasilinear flux to show
explicitly the dependence on collisionality, density and temperature gradients, so that the
sign and magnitude of the flux can easily be estimated. We give approximate analyti-
cal expressions for weakly collisional plasmas with large aspect ratio and circular cross
section. The quasilinear fluxes driven by microinstabilities has previously been studied
in [4] by approximating the collision operator with an energy-dependent Krook-operator.
Here we use a Lorentz operator, but include the results for the Krook operator for com-
parison and completeness. The collisionality dependence of the quasilinear flux due to
the TE-instability has been studied in [5], using a Lorentz collision operator, and here we
generalize the expression presented there by including the magnetic drift unperturbatively.

2. Perturbed density response

The perturbed electron and ion responses are obtained from the linearized gyrokinetic
(GK) equation, [4]

v‖
qR

∂ga

∂θ
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where θ is the extended poloidal angle, φ is the perturbed electrostatic potential, fa0 =
na/ (

√
πvTa)

3
exp (−x2

a) is the equilibrium Maxwellian distribution function, xa = va/vTa

is the velocity normalized to the thermal speed vTa = (2Ta/ma)
1/2, na, Ta and ea are the

density, temperature and charge of species a, ω∗a = −kθTa/eaBLna is the diamagnetic
frequency, ωT

∗a = ω∗a [1 + (x2

a − 3/2) ηa], ηa = Lna/LTa, Lna = −[∂(ln na)/∂r]−1, LTa =
−[∂(ln Ta)/∂r]−1, are the density and temperature scale lengths, kθ is the poloidal wave-

number, ωDa = −kθ

(
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‖

)

(cos θ + sθ sin θ) /ωcaR is the magnetic drift frequency,

ωca = eaB/ma is the cyclotron frequency, q is the safety factor, s = (r/q)(dq/dr) is the
magnetic shear, r and R are the minor and major radii, J0 is the Bessel function of order
zero and za = k⊥v⊥/ωca. We consider an axisymmetric, large aspect ratio torus with
circular magnetic surfaces. We use the usual ordering for the relation of the electron/ion
bounce frequencies and the eigenfrequency of the mode ωbi ≪ ω ≪ ωbe and we consider
weakly-collisional plasmas so that ν⋆e = νe/ǫωbe ≪ 1, where νe is the electron-ion collision
frequency and ǫ = r/R is the inverse aspect ratio. The perturbed electrostatic potential is
approximated by φ(θ) = φ0(1+ cos θ)/2 [H(θ + π) − H(θ − π)], where H is the Heaviside
function and then 〈φ〉 = φ0E(κ)/K(κ). This approximation for the perturbed electrostatic
potential breaks down for low shear or near marginal instability but as we will show,
the qualitative features of the transport are captured by our calculations, although for
quantitatively accurate results one of course has to resort to numerical simulations.
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The ion self-collisions and ion-electron collisions are neglected, while the electron-ion
collisions are modeled by a Lorentz operator Ce = νe(v)2ξ

B
∂
∂λ

ξλ ∂
∂λ

≡ νe(v)L, where νe(v) =
νT /x3

e, ξ = v‖/v and λ = 2µ/(mav
2) with µ = mav

2

⊥/2B. The circulating electrons are
assumed to be adiabatic. The non-adiabatic part of the trapped electron distribution can
be expanded ge = ge0 + ge1 + ... in the smallness of ω/ωbe and the normalized collisionality
ν⋆e, which gives ∂ge0/∂θ = 0 in lowest order. The orbit averaged GK equation gives
the constraint for ge0 as i(ω − 〈ωDe〉)ge0 + 〈Ce(ge0)〉 = (ie〈φ〉/Te)(ω

T
∗e − ω)fe0. Using

WKB-analysis to solve the homogeneous equation and then the method of variation of
parameters to determine the solution of the inhomogeneous equation it is possible to
construct an approximate solution to the orbit averaged GK equation and the perturbed
electron response is proportional to [3]

〈
∫

ge0d
3v

〉

= −4iπ
√

2ǫ

ω0

∫ ∞

0

v2dvŜ
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where Ŝ = −(eφ0/Te)
(

ω − ωT
∗e

)

fe0, ν̂ ≡ νe/ω0ǫ, u = −i(2y − ω̂D), ω0 = ω/y, y = σ + iγ̂,
σ = sign(ℜ{ω}), ω̂D = ωD0/ω0 with ωD0 = −kθv

2/ωceR. The above analysis is not valid
close to the trapped-passing boundary. A boundary layer analysis in [3] has shown that

the effect of the boundary layer reduces the collisional term, with a factor π/2
√

log ν̂−1/2.
The reduction is less than 20% in the experimentally relevant collisionality regime, and
in the following analysis this will be neglected.

The velocity integral in (2) can be evaluated in terms of 2F0 generalized hypergeometric
functions and the perturbed electron density response becomes
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where Fa
b (z) = 2F0 (a, b; ; z/y), ω̂Dt = ωD0/(ω0x

2

e), ν̂t = ν̂x3, ω̂∗e = ω∗e/ω0 and ω̂η∗a =
1− (1−3ηa/2)ω̂∗a/y. Note that the expression for the perturbed electron density in (4) is
exact in ωDe, no approximation regarding the relative magnitude of ωDe and ω has been
made. In the limit of low normalized magnetic drift frequencies, expanding (4) around
ω̂Dt = 0 and keeping only the first order terms, the perturbed electron density reduces to
the following expression (in agreement with Eq. (17) of [3])
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For the ions we neglect the parallel dynamics, by assuming k‖vT i ≪ ω. In this limit (1)
can be solved by neglecting the parallel derivative and replacing ωDi with its flux-surface
averaged value, so the perturbed ion response becomes
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where ω̂Ds = (2 + 3s)ωDi0/4ω0, and ωDi0 = −2kθv
2

T i/3ωciR and we used the constant
energy resonance approximation for the ion resonance [v2

⊥ + 2v2

‖ → 4(v2

⊥ + v2

‖)/3] [4]. In
order to make further progress analytically, we restrict our analysis to long wavelength
perturbations and keep only the linear terms in b = (kθρs)

2, with ρs = cs/ωci the ion
Larmor radius and cs =

√

Te/mi is the ion sound speed. This approximation is valid
for e.g. the fastest growing ITG modes (kθρs ∼ 0.3). Then the perturbed ion response
becomes
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Similarly to (4) it is instructive to give a simple expression of the ion response for small
normalized magnetic drift frequencies. Expanding in ω̂Ds we obtain
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. (7)

The dispersion relation follows from the quasi-neutrality condition n̂i = n̂e where the
perturbed electron and ion densities are given by (4) and (6), respectively.

Figure 1 shows the growth rate and real frequency of the ITG and TE-modes as functions
of normalized collisionality for different FLR-parameters and Ln/R. Clearly the effect of
collisionality is not very large for ITG, but considerable for TE for very small collisionali-
ties. For ITG the growth rates are sensitive to the FLR-parameter b, but less sensitive to
Ln/R. The real frequencies are almost independent on the FLR-parameter, but they are
sensitive to Ln/R. For TE, both the growth rates and eigenfrequencies are insensitive to
the FLR-parameter but they are sensitive to Ln/R.

0.05 0.1 0.15 0.2 0.25
Ν
`

t�Ω
`
*e

0.5

1

1.5

2

Γ

ÈΩr È

0.025 0.05 0.075 0.1 0.125 0.15 0.175
Ν
`

t�Ω
`
*e

0.1

0.2

0.3

0.4

0.5

0.6

Γ

ÈΩr È

Figure 1: Growth rate and real frequency of the ITG (left) and TE-mode (right). The
solid lines are the real frequencies of the mode and the dashed lines are the growth rate,
both normalized to ω∗e. The parameters are: ηe = 3, s = 1, q = 2, ǫ = 1/6, Ln/R = 1/3.
The FLR-parameter b increases from the thin to the thick lines: b = 0, 0.1, 0.2. The red
lines are for Ln/R = 1/5 and the blue lines are for Ln/R = 1/10.
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3. Quasilinear fluxes

The collisionality dependence of the quasilinear fluxes has been studied previously in [3],
but without solving the dispersion relation, and neglecting the effect of the collisionality
on the growth rates and eigenfrequencies of the modes. Here we study the collisionality
dependence of the transport fluxes including the effect of collisions on the eigenfrequency
and we benchmark the results with linear calculations with GYRO. Since the eigenfre-
quency of the ITG-mode is insensitive to the collisionality, the quasilinear particle flux
driven by ITG is almost identical to the one calculated in [3]. In contrast, the particle
flux driven by TE is different, and neglecting the collisionality dependence of the eigen-
frequency is not appropriate in weakly collisional plasmas. The quasilinear particle flux
is ambipolar and is given by

Γe =
kθpe

2eB
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∣

∣

∣
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∣

∣

∣
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)

. (8)

ITG It is instructive to expand (4) for small γ̂, and show explicitly the sign of the
different terms in the expression for the flux. If y = ω/ω0 = −1+ iγ̂, then to lowest order
in γ̂ we have
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If the plasma is close to marginal instability, γ̂ ≃ 0, collisions (represented by the term
proportional to

√
ν̂t) lead to an inward flux if ηe > 4(16(1+ ω̂∗e)− 9ω̂Dt(1+ ω̂∗e))/[3(16+

3ω̂Dt)ω̂∗e]. For typical experimental parameters the inequality for ηe given above is ex-
pected to be satisfied and therefore the total flux is expected to be inwards. However,
if the plasma is further away from marginal instability, so that γ̂ > 2/3, the terms to
1 − 3γ̂/2 and 1 − 5γ̂/2 change sign, and then collisions will lead to an outward flux.

Figure 2ab show the quasilinear electron flux calculated from the unexpanded solution
(valid even γ̂ ≃ 1) normalized to pekθ/(2eB)|eφ0/Te|2

√
ǫ as function of normalized col-

lisionality ν̂t = νex
3/ω0ǫ for various values of ω̂Dt and ηe = 3. In these figures the

collisionality dependence of the eigenfrequency and growth rate is neglected. Figure 2a
is for a case where the plasma is far from marginal stability: γ̂ = 0.7. In the absence
of collisions, the flux is inwards if the curvature and thermodiffusive fluxes (the terms
proportional to ω̂Dt and ηe in the first row of (4)) dominate over diffusion. If collisions
are included, the particle flux may be reversed, if the part of the flux that is dependent
on the collisionality is positive. This reversal happens for instance for ω̂Dt = 0.6, see
Fig. 2a. However, if the ITG-instability growth rate is weak (γ̂ ≪ 1) and ηe is large,
the situation is completely different. Figure 2b shows the normalized quasilinear electron
flux for the same parameters as in Fig. 2a, but for γ̂ = 0.1, representing a case close to
marginal stability. The term proportional to the

√
ν̂t will change sign and now this will
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also lead to an inward flux. If the magnetic drift is high enough to give an inward flux
for zero collisionality, then collisions will enhance this and the flux will therefore never
be reversed. If the magnetic drift is very small, the flux is outwards for ν̂t = 0. Then
collisions may reverse the sign of the flux, but now from outwards to inwards.

Figure 2: Quasilinear electron flux (normalized to kθpe/(2eB)|eφ0/Te|2
√

ǫ) as function of
normalized collisionality. [a, b] ω̂∗e = 1, ηe = 3, red: Lorentz operator, black: Krook
operator. ω̂Dt is 0 (solid), 0.2 (dashed), 0.6 (dotted). [a] γ̂ = 0.7 [b], γ̂ = 0.1. [c]
Quasilinear electron flux for ω(ν̂t) (black solid), ω = const. (dotted) compared with the
linear GYRO result without parallel dynamics (blue). The other parameters are ηe = 3,
s = 1, q = 2, ǫ = 1/6, Ln/R = 1/3. [d] The eigenfrequency |ℜ(ω)| (solid) and growth
rate ℑ(ω) (dotted), both normalized to ω∗e as functions of ηi for the parameters given in
[c] and for different τ = Te/Ti (thin τ = 5, thick τ = 1); present model (black), GYRO
(blue).

Figure 2c shows the normalized quasilinear flux driven by ITG as a function of collision-
ality together with the linear GYRO result (blue line). The dotted line is the case when
the collisionality dependence of the eigenfrequency and growth rate is neglected, and it
is clear that the agreement between the three curves is very good. Figure 2d shows the
growth rate and real frequency of the ITG-mode as function of ηi in the collisionless case
for different values of τ , compared with results of linear GYRO simulations. The blue
lines are the results of linear GYRO simulations. The results of the semi-analytical model
reproduce well the numerical simulations and the effect of τ decreases the growth rates
and frequencies.
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TE The real part of the eigenfrequency is positive, and this means that y = ω/ω0 = 1+iγ̂
and the electron flux to lowest order is
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There are two main differences compared with the ITG driven flux. First, the part of the
flux that is driven by the curvature has opposite sign compared with ITG, and therefore
contributes to the outward flux instead of driving an inward pinch. Second, the part of
the flux that arises due to collisions is different and may have opposite sign compared
with the ITG case, depending on the parameters.

Collisions modeled by a Krook operator Starting from the gyrokinetic equation for
the electrons but modeling the collision operator with an energy-dependent Krook opera-
tor we have i(ω−〈ωDe〉)ge0−νeffge0 = −(eφ0/Te)(ω−ωT

∗e)fe0 so that ge0 = −(eφ0/Te)(ω−
ωT
∗e)/(ω − 〈ωDe〉 + iνeff)fe0, where νeff = νT /ǫx3. The velocity-space integral of the per-

turbed electron distribution can be used to determine the imaginary part of the perturbed
electron density, and that gives the quasilinear particle flux from (8). If the plasma is far
from marginal stability, the results for the Lorentz and Krook operator are qualitatively
same, as shown in Fig. 2a. However, as Fig. 2b shows, as we approach marginal stability,
the form of the collision operator matters more and more, and both the sign and the
magnitude of the flux may be very different.

Figure 3: Collisionality threshold as function of ηe for γ̂ = 0.7
and ω̂∗e = 1. From below ω̂Dt is 0.2 (solid), 0.4 (long-dashed),
0.6 (short-dashed), 0.8 (dotted).

Figure 3 shows the thresh-
old in collisionality for
which the flux reverses
for different values of the
normalized magnetic drift
frequency. The red curves
correspond to the Lorentz
model-operator and the
black curves correspond
to the Krook-model. The
different lines correspond
different values of ω̂Dt.
It is interesting to see
that the Lorentz operator
gives lower threshold for
flux reversal. Above the
lines the transport is out-
wards and below it is in-
wards.
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4. Conclusions

In this paper we presented a semi-analytical collisional model for electrostatic turbulence
and the quasilinear transport fluxes driven by them. The semi-analytical model presented
here includes electron-ion collisions modelled by a Lorentz operator and does not rely on
expansion in the smallness of magnetic drift frequencies. By assuming large-aspect ratio,
low-beta, toroidally symmetric, circular cross section and weakly-collisional plasmas, and
assuming a ballooning eigenfunction for the electrostatic potential, analytical expressions
can be derived for the ion and electron perturbed densities and the quasilinear fluxes.
The model is semi-analytical because the roots of the dispersion relation are obtained
numerically. The results agree well with linear gyrokinetic calculations with GYRO.

The collisionality dependence of the quasilinear particle flux due to microinstabilities has
been studied and it has been shown that if the plasma is far from marginal stability,
the inward transport due to ITG-modes is reversed as electron collisions are introduced,
in agreement with nonlinear gyrokinetic simulations. However, if the plasma is close to
marginal stability, collisions will lead to an additional inward flux, and therefore the total
flux is expected to be inwards. The transport is therefore affected significantly by the
parameter ηe, both directly via the terms proportional to ηe in the expression for the
flux, but also indirectly, via the ITG growth rate that is important to determine the sign
of the flux. If the electron collisions are modeled with a Lorentz collision operator, the
particle flux is proportional to the square-root of the collisionality. The choice of the
model collision operator affects the collisionality threshold for the reversal of the particle
flux ν̂c. This is especially important when the plasma is close to marginal stability. The
collisionality threshold ν̂c depends on the magnitude of the normalized magnetic drift ω̂Dt

and the ratio of density and temperature scale lengths, ηe. For higher ηe and higher ω̂Dt,
higher collisionality is needed to reverse the particle flux.
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