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Abstract. Analysis of stellarator database have shown that albeit on many devices the temperature 
profile consistency is absent, however, on several devices the pressure profiles turn out to be self-
consistent. The pressure profile p in the L-mode may be fitted by quasi-linear function: p0

-1dp/dρ  ~ 
const = k = 1.3 +/- 0.1. To describe the pressure self-consistency we use the variation procedure, 
previously used for tokamaks. We consider the variation problem to minimize the energy functional W 
under the constraint that the total plasma current J is a constant. As a result, we obtained the equations 
for canonical equilibrium and corresponding pressure profiles in L- and H-modes with low, moderate 
and high magnetic shear. Maximal slopes of these profiles are close to maximal slopes of experimental 
pressure profiles observed in TJ-II. 
 
1. Introduction  
 
It is well known that the temperature profiles in a tokamak are self-consistent [1-3]. For the 
stellarators there is no temperature profile consistency [4]. The pressure profile consistency 
concept works in tokamaks [5]. There was found one example of the pressure profile stiffness 
in the pellet injection versus gas puff experiment in LHD [6], and also the features of the 
pressure profile consistency in other LHD experiments [7]. Various examples of pressure 
profile self-consistency for several stellarators were presented in [8]. In this report we extend 
experimental database on pressure self-consistency and use the variational procedure 
developed in [9] for the analysis of the existence of the preferred (canonical) pressure profiles 
in stellarators.  
 
Plasma temperature and density profile evolution have been considered for the various 
experiment. NBI heating of on- and off-axis ECRH heated plasma on TJ-II [10], ECRH 
power scan on W7-AS [11] and CHS [12], high Ti mode on CHS [13], on- and off-axis ECRH 
on W7-AS [4] and gas puffing on ATF [14] were observed (Table 1). In the TJ-II stellarator, 
NBI heating (PNBI = 300 kW) of the target ECRH plasma (PECRH = 300 kW) leads to dramatic 
changes of the plasma density and temperature. ne and Te profile evolution measured by high 
resolution Thomson Scattering diagnostic is shown in Fig. 1. The values varied up to an order 
of magnitude, (0.3 < ne(0) < 6×1019 m-3, 0.2 < Te(0) < 1 keV), the profiles varied from hollow 
to peaked (density), and from peaked to flat (electron temperature). In spite of the large 
difference in ne and Te profiles in the analyzed regime, their product, the plasma pressure pe, 
presents much stronger profile resilience in the confinement zone of the plasma column. It 
was found that the normalized pressure profiles pnorm = p(ρ)/p(0) are much less scattered in 
comparison with plasma ne and Te profiles, see Fig. 2.  
 
In the CHS experiments with on-axis PEC = 150÷215 kW and density ne = 0.47 - 0.95 × 1019 
m-3 variation [12], the similar behavior was found: the increase of Te was accompanied by the 
decrease of ne, leaving pnorm(ρ) practically unchanged. In the experiments with the standard 
major plasma axis (Rax=92.1cm, ne(0)= 4 ×10 19 m-3, Te(0)~Ti(0)=250 eV), and optimized one 
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(Rax=87.7cm, ne(0)= 2 × 10 19 m-3, Te(0)=200 eV, Ti(0)=130 eV) [13], the same tendency was 
found, Pnorm remains almost constant. In high Ti mode (ne(0)= 1.4 × 10 19 m-3, Te(0)=700 eV, 
Ti(0)=1 keV) [13], pnorm almost coincides with the rest of discussed CHS profiles. 
 
In W7-AS experiment with on-axis PEC variation from 0.2 to 0.8 MW at almost the same 
density ne~2×10 19 m-3 [11], the similar behavior was found: increase of Te was accompanied 
by a decrease of ne, remaining pnorm(ρ) practically unchanged. In another experiment, on- and 
off-axis ECRH alternate with corresponding Te and ne variations [4]. It is highlighted in [4] 
that during off-axis ECRH (ρ=0.6) the central density is peaking without an additional particle 
source, which leaded to almost unchanged pnorm(ρ). At the gas puffing in the ATF [14], the 
plasma density rise was accompanied by the concordant decay of Te, again remaining pnorm(ρ) 
practically unchanged. 
 
Despite the difference in the magnetic configurations (heliac TJ-II, torsatrons CHS and ATF, 
optimized W7-AS), a remarkable similarity is seen in the normalized pressure profiles; in 
other words, the normalized pressure profile has universal shape for normal confinement (L-
mode) in all the observed experiments (Fig. 3). The universal profiles can be fitted by a quasi-
linear function in the confinement zone (0.2<ρ<0.8), p0

-1dp/dρ ~const=k = p0
-1∆plinear/∆ρlinear, 

where ∆ρlinear is the radial extension, where profile has almost linear shape In the observed 
cases ∆ρlinear ~ 0.6, k ≈ 1.3 ± 0.1 (see TABLE 1). 
 
Contrary to the L-mode, pressure profiles show different shapes during improved confinement 
modes. An example of the edge transport barrier is shown in Fig 2(b); pnorm(ρ) in HDH 
confinement mode in W7-AS strongly differs from the universal profile, while the reference 
Normal Confinement profile belongs to the universal one [15]. In case of the ITB formation 
the pressure profiles have clearly two components. Outside the ITB, the pressure profiles 
show strong similarity (the universal profile takes place), while in the ITB area p0

-1dp/dρ is 
significantly higher. Figure 3 shows W7-AS data with on-axis PEC =1.2 MW, where the 
temperature and pressure profiles show the ITB formation at ρ ~ 0.25 [11]. In the CHS the 
more pronounced ITB was obtained for the high power on-axis ECRH at ρ ~ 0.4 [13]. Again, 
outside the ITB area the profiles coincide with the universal one.  
 

TABLE 1. FITTING RESULTS OBTAINED FROM DIFFERENT STELLARATORS. 
∆k is linear regression error for k. 

 
Device Type R, m a, m B, T ι/2π(a) -k ∆ k Regime, [Ref.] 
TJ-II heliac  1.5 0.22 1.0 1.6, low 

shear 
1.34 
1.39 

0.04 
0.04 

EC on axis+NBI [10] 
EC off- +NBI [10] 

W7-
AS 

modular 
coils 

2.0 0.2 
0.16 
0.13 

2.5 low 
shear, 
0.56 

1.19 
1.28 
1.38 

0.02 
0.02 
0.02 

PEC scan, ne const [11] 
EC on- off-axis [4] 
HDH [15] 

CHS torsatron 0.92 0.19 
 

0.9 
1.9 
1.9 

high 
 shear 

1.32 
1.39 
1.36 

0.02 
0.02 
0.02 

EC on- +NBI [12] 
EC on-, ITB [13] 
High Ti [13] 

ATF torsatron 2.1 0.27 1.9 shear 1.11 0.02 gas puff [14] 

 



TH/P8-24 3

 

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

time

T e

ρ

Off-axis ECRH

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

time

T e (k
eV

)

ρ

On-axis ECRH

 
 
 
 
 
 
 
 
 
 

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
0

1

2

3

4
time

n e (
10

19
 m

-3
)

ρ

On-axis ECRH

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

time

n e

ρ

Off-axis ECRH 
 
 
 
 
 
 
 
 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

 

 

pno
rm

ρ

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

p n
or

m
e

ρ

 EC off-axis
 EC on-axis

a)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 

FIG. 1. Te (upper) and ne (lower) profile evolution in the NBI experiments for on-axis (left) and off-
axis (right) ECRH in TJ-II. 
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FIG 2. a) TJ-II normalized pressure profiles for data from FIG.1, b) pnorm (ρ) for the data presented in 
TABLE forms the universal profile; CHS: red dots – high Ti mode, brown – Rax variation, red – PEC 
variation, ATF: purple - gas puff, W7-AS: green - PEC-on scan, blue – EC on- and off-axis, black – 
HDH-mode, dark blue – reference Normal Confinement mode, TJ-II: blue dots – EC on, off. Profiles 
from all machines and experiments were radially normalized to the actual plasma size, pnorm(1)=0. 
 
 
 
 

FIG. 3. The universal profile exists outside 
the ITB area. CHS: fat blue – high Ti mode, 
fat red – ITB, W7-AS: green – PEC =0.2-0.8 
MW, thin blue – ITB (PEC=1.2 MW). 
Dashed lines designates internal transport 
barrier. 
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To summarize the empirical observation, we may conclude: (I) In spite of large variety in the 
profiles of plasma electron temperature and density, their product, the electron pressure 
presents the feature of profile constancy in stellarator devises in observed experiments with 
wide range of the plasma and heating parameters.  
 
(II) In the L-mode plasmas of the medium size stellarators the pressure profiles show 
remarkable similarities between each other in low (TJ-II, W7-AS) and high (CHS, ATF) 
magnetic shear configurations. So, the universal profile, characterized by p0

-1dp/dρ ~ const = 
k, was found for L-mode plasmas and out of the ITB area. The other types of profile like LHD 
case [6] may take place for specific plasma conditions. 
 
(III) The observation of the universal constant k in the L-mode (e.g. in the absence of strong 
E×B effects) may suggests that the turbulence and the associated transport reach some kind of 
saturation level, which does not depend on the absolute values of Te and ne, but alternative 
explanations (e.g. based on the role of atomic physics and links between magnetic 
configuration and gradient) cannot be excluded The validation of the transport-based 
hypothesis would require to characterize the link between local gradients and turbulent 
transport.  
 
2. Canonical pressure profiles  
 
We start from the energy integral 

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+=
V

dVpW
12

2

γ
B ,      (1) 

where B is the magnetic field, p is the plasma pressure, γ is the ratio of specific heats, and the 
integration is performed over the plasma volume. First, we integrate here over the toroidal 
angle ζ, so that W will be transformed into the integral over the axially symmetric toroid V  
inside the toroidally averaged plasma boundary. In conventional stellarators with planar 
circular axis, all physical quantities can be represented as 

 f f f= +         (2)  

where ),( zrf  is the axially symmetric (or toroidally averaged) part of f, and ),,(~ ζzrf  is its 
oscillating part, ),,( ζzr  are the usual cylindrical coordinates with z-axis directed along the 
main axis of the system. Accordingly, 
 = +B B B ,  ptB BeB += ζ ,    (3)  

where B  is the axially symmetric and  is the helical magnetic field,  is the unit vector in 

the toroidal direction, Bt is the toroidal component of 

B ζe

B  and Bp is the poloidal magnetic field. 
It is shown in [17] that 

( )∫∫ −=
VV

VddV 222 ~BBB .       (4)  

With this relation we obtain 
2 2

2 1V

pW
γ

⎛ −
= +⎜ −⎝ ⎠

∫
B B dV

⎞
⎟ ,      (5)  

where p  is the axially symmetric part of p, or averaged plasma pressure. To simplify the 
notations we further use p instead of p . In (5) the integration is performed over the 2D 
“quasi-tokamak” region V .  
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To calculate the variation of the energy, δW, we need 2Bδ . The axially symmetric poloidal 
field can be described as . Therefore ζeB tp Arot=

( ) tpt
p AjA δδδ ζζ +×= Be

B
div

2

2

,      (6) 

where  is the ζj ζ -averaged toroidal component of the current density: .  pj Be rot⋅= ζζ

With (6) we obtain from (5) 

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

++=
V

ttt VdpAjBBW
1γ

δδδδ ζ .     (7)  

We assumed here that the helical field is fixed (is not varied). In stellarators we have [17] 

( )[ ]ζψψ
π

∇×−∇= vp 2
1B , 

π
ψψ

2
v

trA −
= .    (8) 

Here  ψν, is the poloidal flux of the helical field B~ .  
 In [16] the energy was minimized under the constraint that the total plasma current is a 
constant of motion, δJ=0. Following this approach we consider the variation problem for the 
functional  

JW λ−=Φ ,        (9)  
where λ  is the Lagrange multiplier. The net toroidal current is 

∫∫∫ ===
⊥⊥

⊥⊥
VSS

Vd
r

j
SdjdJ

π
ζ

ζ 2
Sj ,     (10)  

where S⊥ is the toroidal cross-section of the plasma and ⊥S  is its ζ-averaged image, with 

⊥= SrdVd π2 . Then 

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−+=−
V

ttt Vdp
r

j
rA

r
j

BBJW
12

)(
γ
δ

π
δ

λδδλδδ ζζ ,   (11)  

and the variation principle with (9) gives the following Euler equation: 

0
1
)(

22
=

−
′

+
∂

∂
−+

∂
∂

γ
ψ

ψπ
λ

πψ
ζζ pj

rr
jB

B t
t .     (12)  

where prime means the derivative with respect to ψ.  

In stellarators with 1/~ <<tBB  we have [17] 

r
FBt π

ψ
2

)(
=   and ( )012

2
)(

Ω++
′

=
ψ

π
π

ψ
ζ d

dpr
r

FFj ,   (13)  

Here 2
0

20 /~ B
ζ

B=Ω  with 
ζ

...  staying for the toroidal averaging, and B0 is the toroidal 

magnetic field at the axis. The quantity Ω0 can play an important role in some special cases 
when it can be as large as the inverse aspect ratio with strong in-out asymmetry on the 
magnetic surfaces. But usually Ω0 <<1 so it can be disregarded in (13). With (13) equation 
(12) turns into 

0
1

)1)((
4

)(2 0
22 =

−
′

+Ω+′′−′+
′′−′

γ
λ

π
λ ppp
r

FFFF ,   (14)  

The second and the third terms in (14) are constant at the magnetic surfaces while the first 
term is not constant if nominator is not equal to zero. So disregarding Ω0 we obtain finally 

0)(2 =′′−′ FFFF λ , 0)1( =′′−−′ pp γλγ ,    (15)  

We put further that γ = 5/3, γ/(γ-1) = 5/2. The equations (15,21)-(16,22) imply that 
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FF′ = СF exp(2ψ/λ),   )/5.2exp( λψpCp =′ .   (16) 
With these functions the two-dimensional equilibrium equation for stellarators [17] becomes 

( )
2F

2
2

)/exp(2  )/5.2exp(4/2div
r

CCrj
r p

v λψλψππ
ψψ

−−=−=
−∇

.  (17) 

The latter equation can be naturally called Canonical equilibrium equation for conventional 
stellarators. The equation (17) is of Poisson type equation, which requires the boundary 
condition at the plasma boundary S, which is a magnetic surface,  
  ψ(S) = const = ψb.       (18) 
 Equation (17) includes three parameters, СF, Сp and λ, so we have to add three 
additional conditions to find them. One can be the prescription of ψ at the magnetic axis, 
  ψ(M0) = ψ0,        (19) 
or this can be replaced by the given value of the rotational transform µ=-dψ/dΦ at the 
magnetic axis. Here Φ =  is the toroidal flux inside the magnetic surface ψ. ∫

ψS
t dSB

The second constraint is the given total plasma current:  
b

S

J d
⊥

⊥= ∫ j S .        (20)  

In stellarators this is usually small, and often J = 0 is assumed. In experiments we usually 
know the averaged β (the ratio of plasma pressure to magnetic pressure). It can also be 
represented in the model by 
 β0 = 2p0 / 2

0B ,         (21) 
where p0 is the plasma pressure at the magnetic axis and B0 is the toroidal field at the axis. 
Prescription of β0 can be the third required condition.  

Complete solution of the canonical equation (17) would give us the parameter λ, which was 
introduced as the Lagrange multiplier in (9). With known λ we could find the profiles of F 
and p, which for the canonical equilibrium are determined by the one-dimensional equations 
(16). The solution for pressure p can be written as  

( )
1.25 1.25

0 1.25

e e
1 e

ku k

b k bp p p p−
= − +

−
,       (22) 

where  and  are the plasma pressures at the magnetic axis and at the edge, respectively, 0p bp

0

0

ψψ
ψψ

−
−

=
b

u  (0 < u < 1)  )(2
0ψψ

λ
−= bk .   (23)  

A general solution to Eq. (17) is 
plextv ψψψψ ++= ,       (24) 

where extψ  describes the contribution due to the external poloidal field and plψ  due to the 
equilibrium currents in the plasma. We assume here 0=extψ  and consider the case 

vpl ψψ << , which corresponds to low-β plasma. Then  

vψψ ≈ .        (25) 
Let us consider the simplest case of the cylindrical plasma with circular cross-section. In this 
case )(ρψψ vv = , where ρ is the radial coordinate of the plasma cross-section. Then  

µπρρψ 02/ Bv −=∂∂ ,        (26)  
where µ is the rotational transform which, in a general case, can be approximated by 



TH/P8-24 7

         (27)  2
00 )( ξµµµµ −+= b

with µ0 = µ(0), µb = µ(1), b/ρξ =  and  is the minor radius, so that 0b 1. This yields ≤≤ ξ

( )[ ]2/2
00

22
0 ξµµµξπψ −+−= bv bB   

( )
b

bu
µµ

ξµµµξ
+

−+
=

0

2
002 2 .  (28)  

This can be called the low-β approximation of u.  
With given  and u we have the last unknown k. As a particular example let us consider 
the case with the prescribed ratio  i.e k = - 4/5 ln(p0/pb). This choice corresponds 
to the following boundary condition 

0/ ppb
1.25

0/ e k
bp p =

 ku
du
dp

p
25.1)1(1

== ,        (29)  

Such a type of boundary condition was proposed for tokamaks by Kadomtsev in his 
interpretation of the variation procedure [18]. The condition (29) gives 
 ) .        (30)  25.1exp(0 kupp =

Expression (30) with u  given by (28) reduces to 

]}2/)1(1[)]1/()[ln(2exp{)( 2

0

2

0

0
0 ξ

µ
µξ

µ
µξ −++−= bb

b
c p

ppp    (31)  

which can be called as a Kadomtsev-type profile for stellarators.  
 
We consider the models of H- and L-modes, using the freedom in selecting the parameter 

 describing the plasma, bpp /0

 p0/pb = 10  (for the H-mode),  p0/pb = 100 (for the L-mode), (32)  

and 3 cases with different shear, which is a characteristic of a stellarator configuration  

µb/µ0 = 1 (zero shear),  µb/µ0 = 2 (moderate shear), µb/µ0 = 4 (large shear) (33)  

Substituting (32)-(33) into (31) we can find the largest slope coefficients k =  
max [-(1/p0)dpc/dξ] of the profiles of p(ξ)/p0. The results are shown in figure 3. This shows 
1.45 < k < 1.55 for the L-mode and k = 1.3 for the H-mode. It was shown earlier in Table 1 
that k = 1.3 ± 0.1 for the experimentally measured L-mode pressure profiles in several 
devices. The proximity of these experimental results and the above theoretical estimations 
lead to the conclusion that the observable experimental self-consistency of pressure profiles in 
stellarators might be based on the minimum energy variation principle. Note that the 
representation of pressure profiles in the exponential form similar to (31) was used recently 
during the analysis of the LHD experimental profiles [12]. 
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FIG. 4. The canonical pressure profiles for 
stellarators with different magnetic 
configuration. Here 
k= max [-(1/p0)dpc/dξ]. 
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3. Conclusion  
 
It was assumed for a long time that the energy and particle transport in a stellarator is defined 
in main by neoclassical transport coefficients and in this sense the stellarator differs radically 
from a tokamak, where the transport is anomalous and defined by the plasma turbulence. 
Nevertheless, gradually, the experimental facts originated the doubt in such a paradigm. The 
observation of the H-mode and internal transport barriers and the proximity of the stellarator 
energy confinement time scaling to the tokamak scaling led to the opinion that the turbulent 
transport plays the important role in stellarators. It was reported recently [7] that the pressure 
profile self-consistency is observed in stellarators, as well.  
 
In this Report the variation procedure (proposed 20 years ago for tokamaks) is used to 
construct the pressure canonical profiles for stellarators. As a result we come to the two-
dimensional equilibrium equation for so called “canonical equilibrium”. The corresponding 
pressure profiles are estimated in low-β plasma approximation. The profiles thus obtained are 
close to the experimental normalized pressure profiles, although slightly differ from them as 
in tokamak case. However, in tokamaks the temperature profiles of electrons and ions are 
self-consistent also, which does not seen so far in stellarators. Apparently, this difference is 
explained by the absence of the total current in stellarator and, as a consequence, by a smaller 
influence of Ohm’s law. As a result in a stellarator the temperature profile easily changes its 
form but this feature is quite limited in a tokamak. The existing of two self-consistent profiles 
in a tokamak (temperature and pressure) allows one to construct the transport model 
concerning the temperatures and plasma density based on this property [5,19]. Unfortunately 
the second self-consistent profile for the stellarator is not seen so far, so the problem of full 
canonical profiles transport model for stellarator remains open.  
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