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1 Introduction

Impurity behavior in tokamak plasmas is a complex problem related to confinement and

transport of the bulk ions and electrons and to plasma-wall interaction. This is a very important

issue for the development of fusion reactors. Besides of a strong theoretical and experimental

effort, this topic is not completely understood. We discusshere several aspects of impurity

transport in turbulent plasmas.

We have shown [1] that the gradient of the confining magnetic field generates a pinch (average

velocity) in turbulent plasmas. It is a ratchet type processthat appears in test particle approach

due to the modification of guiding center trajectories. It determines the contamination of the

plasma from the source of impurities localized at the border. Particle collisions and plasma

poloidal rotation are included in the test particle model. We show that strong nonlinear effects

appear when trajectory trapping or eddying is effective. Anadditional effect of the magnetic

field gradient appears when particle density is considered:the divergence of theE×B drift pro-

duces a pinch velocity, the curvature or turbulent equipartition pinch [3], [4]. We show that the

density pinch is not equal to the curvature pinch and that it is strongly influenced by the ratchet

effect. Impurity accumulation (density peaking) is studied as function of the characteristics of

the turbulence.

The evolution and the statistical characteristics of the impurity density passively advected by

the drift turbulence modeled by the Hasegawa-Wakatami (HW)equation is numerically inves-

tigated. We have shown [9] that the impurity density and the vorticity of theE×B drift exhibit

similar multifractal behavior. A good agreement is found between the impurity density relative

exponent and the She-Leveque model, which shows that intense vortex filaments are responsi-

ble for impurity transport. The numerical simulation of theimpurity density in HV turbulence

is performed and the impurity pinch is analyzed.
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2 Impurity pinch produced by the inhomogeneity of the magnetic field

We consider in slab geometry an electrostatic turbulence represented by an electrostatic po-

tential φe(x, t), wherex ≡ (x1,x2) are the Cartesian coordinates in the plane perpendicular to

the confining magnetic field directed alongz axis,B = Bez. The magnetic field depends on the

distance from the main symmetry axis asB = B0exp(−x1/LB), whereB0 is the value of the

magnetic field in the origin of the coordinates that is atx = 0 andLB is its characteristic decay

distance. The electrostatic potential is considered to be astationary and homogeneous Gaussian

stochastic field with known two-point Eulerian correlationfunction (the Fourier transform of

the spectrum). We study the transport of test particles (section 2.1) and of passive fields (section

2.2) advected by such stochastic field.

The aim of this study is to determine the transport of impurities as function of the charac-

teristics of the turbulence. It provides the transport coefficient scaling in different regimes and

the understanding of the nonlinear effects. In particular,the conditions that correspond to im-

purity accumulation can be identified. A self-consistent numerical study of impurity dynamics

is presented in section 3.

2.1 Test particle pinch

The test particle motion in the guiding center approximation is modeled by

dx(t)
dt

= −exp(x1/LB)∇φ(x, t)×ez+Vp+η(t), (1)

wherex(t) is the trajectory of the particle guiding center,∇ is the gradient in the(x1,x2) plane,

φ(x, t) = φe(x, t)/B0, Vp is the average velocity andη(t) is the collisional velocity. The tur-

bulence is characterized by three parameters: the amplitudeV of the stochasticE×B drift, the

correlation timeτc, which is the decay time of the Eulerian correlation and the correlation length

λc, which is the characteristic decay distance, which combine in the Kubo number

K =
τc

τ f l
=

Vτc

λc
(2)

whereτ f l = λc/V is the time of flight of the particles over the correlation length. The shape

of the Eulerian correlation does not influence the general behavior of the transport, but only

the strength of the trapping effect [?]. The collisional velocityη is modeled by a zero average

Gaussian white noise with the collisional diffusion coefficient χ = ρ2ν/2, whereρ = Vth/Ω is

the Larmor radius,Vth is the thermal velocity,Ω = qB/m is the cyclotron frequency andν is the

collision frequency. The collisional diffusion coefficient depends on space through the Larmor

radius due to the magnetic field inhomogeneity asχ = χ0exp(2x1/LB), whereχ0 corresponds

to the reference magnetic fieldB0. The average velocityVp is taken alongx2 axis that represents
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the poloidal direction. This velocity is the difference between particle average velocity and the

poloidal rotation velocity of the stochastic potential. The collisions and the poloidal rotation

introduce two dimensionless parameters

χ0 =
τ f l

τcoll
=

χ0

Φ
, V p =

τ f l

τp
=

Vp

V
(3)

where the collisional timeτcoll = λ 2
c /χ0 is the time during which the collisional mean square

displacement attainsλ 2
c , τp = λc/Vp is the time of decorrelation by the average velocity and

Vp =
∣

∣Vp
∣

∣. One can note that Kubo number,χ0 andV p are similar in the sense that all describe

physical effects (time variation of the potential, collisions and average velocity respectively)

which perturb the motion along the potential contour lines.Smallχ0 andV p and largeK corre-

spond to nonlinear regimes strongly influenced by the structure of the stochastic potential.

We use the decorrelation trajectory method [6], [7] for the calculation of the average velocity

and of the diffusion coefficient for given Eulerian correlation of the potential and for arbitrary

values of the parameters of this model (K, χ0, V p andR = LB/λc). This is a semi-analytical

approach based on the study of the stochastic equation (1) insubensembles of realizations of

the stochastic field, which are determined by given values ofthe potential and of the velocity in

the starting point of the trajectories.

An average asymptotic velocity of theE×B stochastic drift (the ratchet effect) is obtained for

χ0, V p = 0 provided that there is a gradient of the magnetic field (finite R) and time variation

of the stochastic potential [1]. For a static potential the average velocity is transitory and it

has a finite asymptotic valueVR only for finite correlation time (i.e. finiteK) of the potential.

This average velocity is along the gradient of the magnetic field (alongx1 axis) and is given by

VR = (V/R) f (K) where f (K) is a dimensionless function. This function is positive for small

Kubo numbers (corresponding toVR directed against the gradient of the magnetic field), at a

valueKinv that is of the order 1, the ratchet velocity becomes negative (parallel with∇B) and it

decays to zero forK →∞. The absolute value of this function is represented in Fig. 1 by the blue

line. The physical explanation for this behavior of the average velocity is the following. For fast

variation of the stochastic field (K < 1), the displacements during the correlation time are much

smaller thanλc and they are along the initial velocities. The latter decrease in the direction of the

gradient of the magnetic field∇B producing displacements that are smaller than in the opposite

direction. An average displacement appears in the direction −∇B (positivex1). At large Kubo

numbers a part of particles are trapped and perform duringτc almost periodic motion on the

corresponding contour line of the potential. The space dependence of the magnetic field does

not change the paths of the guiding centers in static potential, which are the contour lines of the
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Figure 1:The ratchet pinch normalized with V/R as function of the Kubo number for the values

of χ0 that label the curves

potential, but it only influences the velocity along the paths. It is larger in the low magnetic field

side and thus the particles stay there shorter time than in the high field side. Then, the average

displacement is negative and corresponds to a pinch velocity in the direction of∇B.

The influence of collisions on the motion in the stochastic potential is obtained as an effective

Eulerian correlation [2]. The spreading of the trajectories due to collisions produces the decay

of this function. Namely, the amplitude of the collision averaged potential decays in time with

the factor 1+ 2χ0t and the square of the correlation length increases with the same factor.

This behavior is obtained also for constant magnetic field and determines an effective Kubo

number that decays in time. The specific effect for inhomogeneous magnetic fields consists in

the drift of the effective Eulerian correlation with the velocity−3χ0/R alongx1 axis. This drift

is produced by the correlation that appears between the inhomogeneity of the magnetic field and

the stochastic potential through the collisional displacements that are inhomogeneous as well.

This is a nontrivial nonlinear effect. Collisions also determine a direct contribution to the pinch

due to the space dependence of the diffusivityχ induced by the magnetic field.

A very strong influence of collisions on the turbulent pinch is seen to appear from very small

collisional diffusivity. The pinch velocity is much modified for K > 1 (in the nonlinear regime

of the turbulence), but very weakly influenced forK < 1 (in the quasilinear regime). This regime

is represented in Fig. 1 by the red lines, which correspond tovery small collisional diffusivity

(χ0 = 0.01, and 0.05). These curves are superposed forK < 1 and show significative increase

of the pinch velocity at largeK. At larger values ofχ0 the dependence is reversed (see the black

lines in Fig. 1). But at these values ofχ0 the average velocity is collision dominated and the

direct contribution of collisions is much larger than the turbulence effect.

The poloidal velocity determines the decrease of the pinch velocity [2]. The decrease appears
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only at large Kubo numbers ifV p < 1 and for all values ofK if V p > 1. The dependence on the

Kubo number at largeK is practically unchanged: it remains approximately asK−1.

In the presence of poloidal rotation and collisions, the pinch velocity becomes a complicated

function of the three parametersχ0, V p andK. In the weekly collisional nonlinear regime char-

acterized by existence of trapped trajectories, the collisions produce the increase of the pinch

velocity. They also can produce a second inversion of the sense of the average velocity at large

values ofK. The increase of the pinch velocity by collisions roughly compensates the decay due

toV p reaching at largeK typical values that are of the order of those obtained in the unperturbed

E×B drift (χ0,V p = 0).

There is however an important difference between the perturbed and unperturbed case. The

ratioVR/D is much larger than in the unperturbed case due to the strong decrease of the radial

diffusion coefficient produced by the poloidal rotation. This ratio is the measure of the effect

of the direct transport. The latter is dominant for large values of this parameters and leads to

peaked probability profiles. The values of this parameter for the unperturbedE×B transport are

small, of the order 1/2R for both quasilinear and nonlinear conditions. Much largervalues are

obtained in the nonlinear case forK > 1 in the presence of a weak poloidal rotation. Collisions

can also contribute to the increase of the ratio of direct to diffusive transport but the main

contribution comes from the poloidal rotation, which strongly increase this ratio by decreasing

the radial diffusion coefficient. The weak collisionality regimeχ0 < 0.1 roughly corresponds to

the range of the normalized collision frequency that appearin the measurements of the density

peaking factor in H mode plasmas presented in Ref. [8]. The values of the poloidal velocity

corresponding to the nonlinear regime are. 1000m/sec.

2.2 Density pinch

Due to the space dependence of the magnetic field, theE×B velocity has non-zero divergence

and the density is compressible

∂tn+v ·∇n = n
v ·∇B

B
. (4)

An average velocityVc is obtained

Vc = D∇ ln(B) = −
V2τc

LB
e1 (5)

whereD = V2τc is the diffusion coefficient ande1 is the unit vector alongx1 axis. This velocity

is called curvature or turbulence equipartition pinch and appears due to the compressibility

effect produced by the inhomogeneity of the confining magnetic field (the right hand side term

in Eq. (4)).
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We derive the equation for the average density from the stochastic advection equation (4) us-

ing the characteristics method and taking into account the effect of the inhomogeneous magnetic

field on particle trajectories. The average density is obtained as

n(x, t) =

∫

d2x′ n0(x′)exp

(

−
x1−x′1

LB

)

P(x−x′, t) (6)

where the probability of the displacementsP is defined byP(x−x′, t) = 〈δ [x′−x(0;x, t)]〉 and

n0 is the initial density. The two effects of the gradient of themagnetic field appear in Eq. (6):

the compressibility determines the exponential factor while the modifications of the trajectories

should be reflected in the probabilityP.

A general expression for the density pinch velocity that applies for quasilinear and nonlinear

turbulence was derived in [5]

Vn = VR−
D
LB

= VR+Vc. (7)

Thus, the density pinch velocity is the sum of the ratchet andcurvature pinches. Eq. (7) also

shows that the curvature pinch in the nonlinear turbulence has the same structure as in the quasi-

linear case but contains the effect of trajectory trapping in the diffusion coefficientD = D(K).

The density pinch velocity for the quasilinear turbulence isVn = −V2τc/2LB. This velocity is

different from both curvature and ratchet pinches. It is half of the curvature pinch (5) and it has

the amplitude of the ratchet pinch (??) but opposite direction (parallel to the gradient of the

magnetic field).

The effect of the pinch velocityVn on the average density profile appears in the dimension-

less parameterp = aVn/D (wherea is the minor radius) rather than in the absolute values. This

parameter, the peaking factor, is an estimation of the average density gradient determined by

the equilibration of the advective and diffusive transportwhen the boundary fluxes are negli-

gible. One obtains in these conditionsa/Ln
∼= p, whereLn is the characteristic length of the

average density. The peaking factor produced by the densitypinch (7) isp = |aVR/D−a/LB|.

This shows that the curvature pinch (second term) contributes to the peaking factor with a con-

stant (small) valuepc = a/LB
∼= a/R. Density peaking can be driven by the ratchet pinch. It is

important to note that this effect appears only in nonlinearturbulence (K > 1) in the presence

of poloidal rotation.

3 Self-consistent numerical simulations

Numerical simulations of the Hasegawa-Wakatani (HW) turbulence were performed to un-

derstand the fundamental process of impurity pinch. The HW system, despite its underlying

simplifying assumptions, contains the basic elements to investigate transport, including a large
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Figure 2:Contour plots of the impurity density advected by the HW turbulence.

spectrum of turbulent fluctuations and the spontaneous formation of coherent structures. It has

been investigated by many authors in the last two decades [11, 12], In particular, HW system

allows the study of cross-field transport by electrostatic drift waves. The phase difference be-

tween the potential and the density fluctuations is controlled by the parameterc. Depending on

the value of this parameter two limits are distinguished. Inthe,c� 1 adiabatic limit, the elec-

trons have a Boltzman distribution, there is no phase difference betweenn andφ , and the model

reduces to the Hasegawa-Mima equation. On the other hand, inthec� 1 quasi-hydrodynamic

limit, the system reduces to a two-dimensional Navier-Stokes equation describing theE×B

flow, and a passive advection equation describing the density fluctuations.

Direct numerical simulations of HW system are performed for512×512 grids with a square

box sizeL = 64 with double periodic boundary conditions using a finite difference method for

spatialy. The nonlinear terms are computed using a method developed by Arakawa [10]. The

time stepping is performed using a predictor-corrector scheme. We have focused on the quasi-

adiabatic regime obtained forc = 0.7, which is more relevant for the tokamak edge turbulence.

Once the system reaches a well established saturated turbulent regime with stationary statistical

properties, we inject Gaussian stripes as initial impuritypuffs and then let them advected by the

background turbulence according to Eq. (4).
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We have determined the evolution of impurities that are initially localized in a narrow strip,

and we have estimated from these results the time evolution of the average and the mean square

displacement. A good agreement with the theoretical results was obtained.

4 Conclusions

Impurity accumulation (density peaking) can appear due to the gradient of the magnetic field

only in the presence of trajectory trapping and of a slow poloidal rotation, with velocity of the

order of 103m/secfor JET plasmas. In these conditions, the presence of collisions determines a

dependence of the peaking factorp that is similar to the JET H-mode database for the range of

the effective collision frequency appearing there, and that p decays at weaker collisionality.

These studies strengthen the idea that the impurity transport in tokamak turbulent plasmas is

a nonlinear process with characteristics far from the Gaussian ones, with intermittent behavior

and memory effects.
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