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A self-consistent model of the multiscale interaction of zonal flows (ZFs), zonal fields 

(ZFLDs) and geodesic acoustic mode (GAMs) with edge turbulence is presented. In 

the collisionless and collisional regimes, the dominant short scale modes in the 

background at the edge of tokamak plasmas are electrostatic ion temperature gradient 

(ITG) mode and electromagnetic high-m drift-resistive-ballooning mode (DRBM), 

respectively. The modulational instability of ZFs, ZFLDs, and GAMs in the 

background of ITG and DRBM driven turbulence has been studied. The kinetic wave 

equation is used to study the adiabatic interaction between long-scale ZFs, ZFLDs and 

GAMs, and the small-scale background turbulence (DRBM, ITG). We have also 

determined conditions under which ZFs saturate by different mechanics such as by (i) 

collisional damping (ii) instability to tertiary modes (iii) nonlinear trapping of ITG 

mode turbulence in ZFs, giving coherent structures etc. From a ‘predator-prey’ model, 

the turbulent transport in a collisional edge (Low-confinement regime) has been 

estimated. We have also derived the condition for density limit from the threshold of 

the tertiary modes. The dependence of critical density crn  on other basic plasma 

parameters is also given.     

 

INTRODUCTION: The physics of radial turbulent transport in tokamak edge plasma 

is a topic of great current interest for optimizing the performance of ITER and other 

tokamaks. It is now widely accepted that the edge physics plays a vital role in 

controlling the global confinement properties of a tokamak discharge through 

phenomena such as the L–H transition, Greenwald density limit disruption etc. 

Furthermore, an agreement seems to be emerging around the view that when the 

plasma is collisional, ( /fC qRλ= ; fλ , the collisional mean free path, q , the safety 

factor, R , the major radius), the edge plasma collisionality (C ) plays a crucial role in 

determining the underlying physical processes. For example, if 1C < , the turbulence 

process in the edge maybe dominated by the nonlinear properties of high-m drift 

resistive ballooning mode (DRBM)
 1-2

, which has a typical growth rate of order the 

ideal growth rate, nsideal RLc /2~γ , ies mTc /= , the ion sound speed, and nL , the 

density gradient scale length. On the other hand, if 1C > , which can be expected to 

occur in ITER-like machines, especially with sharp gradients of ``equilibrium’’ 

profiles, the edge plasma may well be in a nearly collisionless regime. In such 

situations, the turbulence may be dominated by properties of the ITG modes. An 

intermediate regime of 1C � , is by far a complex situation where weak DRBM, weak 

ITG and/or drift-Alfven modes could become important. In this paper we investigate 
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the nonlinear excitation of ZFs
3
, ZFLDs, and GAMs

4-6
 in the two distinct regimes of 

collisionality and explore the modulational stability of the primary high-m 

DRBM/ITG turbulence to the long-scale modes. Since the long-scale ZF, ZFLD, and 

GAM modes are well separated from the small-scale modes driving them (i.e., ITG 

and high-m DRBM turbulence), the wave-kinetic-equation and adiabatic theory is 

used to study the interaction between these modes.   

The predator-prey model for saturation of ZFs shows that the saturation level of the 

primary turbulence is determined by the damping of the secondary ZF modes.  In the 

collisional limit (C < 1), damping of ZFs is dominated by neoclassical collisional 

damping and we get a primary turbulence saturation level, proportional to neoclassical 

collisional damping.  As collisional damping decreases, the saturation level drops, 

anomalous transport diminishes and we go from L to H modes. When collisional 

damping is very small, the model predicts unrealistically low values of the saturated 

primary turbulence and transport. Under these conditions we must look for other 

mechanisms, which take the place of collisional damping of ZFs. We consider two 

mechanisms in this paper, which are particularly relevant for the regime where the 

neoclassical damping is smaller than ZFs growth.  First is a tertiary instability 

mechanism in which the secondary zonal flows and fields are themselves unstable to a 

Kelvin-Helmholtz (K-H) type of instability. We find that the ZFLDs provide an 

additional effective magnetic shear and actually stabilize the tertiary instability. It is 

important to note that in a time-dependent situation, short-scale and long-scale ZFs, 

ZFLDs, and tertiary modes could co-exist (predator-prey) and hunt for the source of 

free energy. Then, a quasi-steady state of such a system could only be determined by 

the comparison of their relative growth rates to the neoclassical collisional damping 

rate. Thus for example, (1) an L-mode could be thought of as a state where the growth 

of ZFs is less or comparable to ion neoclassical collisional rate (i.e. neo

i ZFν γ≥ ), (2) an 

H- mode can be attained when the ZFs growth rate is larger than neoclassical 

collisional damping, as well as the ZF is stable to the tertiary wave (K-H instability) 

i.e., 
neo

K H i ZFγ ν γ− < < , (3) the Greenwald density limit could be hit if the ZF is 

unstable to the tertiary mode i.e., the growth rate of tertiary wave 0K Hγ − ≥ . Making 

use of the condition 0K Hγ − ≈ , we get the dependence of critical density crn  on other 

plasma parameters: 0.93 0.58 0.81 0.12/crn I R B A∼ . Another mechanism which operates in 

some collisionless cases, where dispersion is important, is the trapping effect of 

primary drift-like modes in secondary zonal flows, which produce nonlinear coherent 

structures with saturated drift-like turbulence and ZFs nonlinearly sustaining each 

other with trapped and untrapped distributions of primary turbulence. We illustrate 

this mechanism with an example of collisionless ITG modes trapped in ZFs. This 

required condition for trapping is 
neo

i K H ZF Bν γ γ ω−< < < , where Bω  is the bounce 

frequency of trapped particle in the zonal potential field.  

 

Model equations:  In the limit se ckck //// >>ω> , the basic equations describing the 

dynamics of DRBM/ITG are the equations for perturbations of density n� , potential 

φ� , temperature iT� , magnetic flux ||A�   

2

2
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2

// // // //
ˆ ˆ ˆ0.5 ( ) ( ) 0.5 [( ), ]k e t e y k e k k e k k kA A n n Aβχ α χ φ βχ φ⊥−∇ + ∂ + ∂ + ∇ − = − −� � � � �� �               (4) 

Here note that for simplicity we have neglected ion and electron temperature 

perturbations in the nonlinear terms, however, finite-Larmor-radius effect through 

polarization drift due to diamagnetic effect is included. The various plasma 

parameters and perturbed quantities are defined as in Ref. (1). 

 
Linear dispersion relation of High –m DRBM:  The linear dispersion relation for the 

high-m Drift Resistive Ballooning mode (DRBM)
 2

 is:  
2 2 2

0
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//
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This equation contains a simple drift mode, a standard DRBM and also the high-m 

DRBM (or new branch of DRBM) [1]. In the limit 2 2

||
ˆ

ek kω χ⊥ < , 2ˆ ˆ0.5 ( )e yk kβχ ω ⊥− <  

and without ion temperature perturbation ( 0ikT =� ), the frequency and growth rate of 

electrostatic drift and drift interchange modes are 
2 2

2 2 2

/ int //

(1 ) (1 ) ,

ˆ( ) (1 )

drift y i

d erchang drit drit i y n y i e

k k k

k k k k

ω α

γ ω ω α ε τ χ

⊥ ⊥

⊥

≈ − +

 ≈ + + + 
                                               (6) 

The DRBM instability dominates over drift-Alfven mode, simple drift, and resistive 

ballooning mode if the plasma is collisional,  
2 2 1/ 2 1/ 2[ 2 / 1 ]( / ) 2(1 ) ( / )( / )f i n i e i f i n ek q R L m Rm R Rm L mλ τ τ β λ
⊥

> + > + . 

This also yields the condition that β  is less than the ideal cβ  [i.e. 

2(1 ) / ) 1c i nq R Lβ τ β≈ + < ]. In the limit 1nε <  and 2 1k⊥ < , the real frequency and 

growth rate of DRBM are given by 
2 2 2

1 || 1 || || 0

2 2 1/ 2 2 2 2

0 1 || 0 1 || ||

ˆ0.5 ( ); ( ) 0.25 [2 (1 )] /

ˆ( ); [ (1 ) / 4] , ( ) 0.5(1 ) /

r i y y i e

n i i y e

k k k k k k k

k k k k k k

ω α ω ω α χ γ

γ γ γ γ ε τ α γ χ

⊥ ⊥

⊥ ⊥

≈ − + ≈ + −

≈ + = + − ≈ − +
   (7) 

Here 0γ  is the ideal mode growth rate. Note that ||k and electric conductivity ( χ̂ ) 

effects are stabilizing and also introduce a frequency shift in the electron diamagnetic 

direction. One can also note that the growth rate of DRBM is close to the ideal growth 

rate when the plasma is highly collisional.   

 

Basic equation for long scale modes in background of high – m DRBM wave 
turbulence: The standard description for generation of ZFs, ZFLDs, GAMs, and 

tertiary waves in the background of short-scale turbulence (DRBM) relies on two-

scale separation. The ZFs, ZFLDs, and GAMs describing large-scale waves, vary on a 

longer time scale compared to the small-scale DRBM fluctuations - there is a 

sufficient spectral gap separating both the scales (i.e. ;q k q⊥ ⊥ ⊥<  and k⊥  are the 

perpendicular wavelength associated with ZFs, ZFLDs, GAMs, and DRBM modes, 

respectively). We therefore exploit the two-scale assumption to obtain an equation for 

the long-scale modes by averaging over fast times and shorter structures. In the limit 
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2 1/ 2 1/ 22 (1 )( / )( / ) ( / )i f n i eq R R L m mβ τ λ
⊥

< +  and n TL L< , the basic equations for the 

long wavelength modes are:  
2 2
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// //
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1

// // //( ) 2 ( ) [( ), ]t e y q q q k k kA n n Aα β φ φ−∂ + ∂ + ∇ − = − −� � � �� �                             (9) 

Here, the average []  indicates an averaging over small scales.  

The effect of high-frequency DRBM fluctuations with random phases on long-scale 

ZFs, ZFLDs, and GAMs can be estimated from the Wave-Kinetic Equation (WKE)   
2=t k nl x k x nl k nl k k kk k

N N N N Nω ω γ ω∂ + ∂ ⋅∂ − ∂ ⋅∂ − ∆� �� �  .                                               (10)                                       

The quantity kN  is the adiabatic action invariant [3,8], where = / | |k k rkN E ω  and kE  

is the energy of mode k  with frequency | |rkω . In Fourier space, kE  of each mode k  

is 
2 2 2 2 2

||=| | | | | | | |
k k k k kE n k Aφ φ⊥+ + ≈ Λ� � �� ;  

||
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2
2 2 2 2
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ˆ 1 | | 2 | |A e y k y rk kk k k kα χ ω ω ω⊥ + −∼                                

Here lin

rkω  and lin

kγ are given by Eq. (7) and the nonlinear modifications due to slow 

modes in frequency and growth are  

1 1
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∂ ∂

� � �� � �
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2 2 2 2

|| || 0 || ||
ˆ ˆ/ 0.5 [2 (1 )] / ; / (1 ) /r y i e ek k k k k k k k kω α χ γ γ χ⊥ ⊥ ⊥ ⊥∂ ∂ = + − ∂ ∂ = − +                    (12)      

 
Zonal flow and zonal fields instabilities:  In the long wavelength limit i.e. 

2 ˆ0.5
x e qq βχ γ<  and wave number 0xq ≠  and 0y zq q= = , the equations of ZFs and 

ZFLDs are  

( )

|| ||

// //

2

0.5
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�
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Where ( )2 2 2ˆ ˆ ˆ1 | | 2 | |
k y k y rk k

k kω ω ω∗Λ ≡ + − . After Fourier transform, the growth rates 

of ZF and ZFLD are 

||
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0
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|| || 0
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ˆ ˆ0.5 ( / )( | | / )( / ) .
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∑

∑
                  (15) 

The growth of zonal flows and zonal fields can be viewed as a cascade of energy from 

the small-scale to large-scale electrostatic potential (zonal flow) and magnetic field. 

Also note that the growth rate of zonal flow is derived from the modulation of the 

frequency of the background wave, whereas the zonal magnetic field results from the 

modulation of growth, and this can be viewed as a small-scale dynamo action.  

In order to compare the growth rates of ZF and ZFLD in high–m DRBM regime, we 

use the following normalizations [1-2],   
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The frequency and growth of DRBM can be rewritten as  
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The zonal flow and zonal field growth rates are  

( ) ( ) ( )
22
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Where 2 2 2 2ˆ ˆ ˆ ˆˆ ˆ( , ) 1 / | | 2 / | |d k d k d rk kF m mα ω α ω α ω ω= + − , || ||ˆ /
A A

q q idealγ γ γ=  and 

ˆ /q q ideal

φ φγ γ γ= , ˆ /neo neo

i i idealν ν γ=  is the neoclassical ion collision rate. Note that for 

ˆ 1m >  and ˆ 1β < , the high-m DRBM is the leading unstable mode in a collisional edge 

[2], and the growth rate of zonal flow is larger than the zonal fields growth, whereas 

as in the opposite limit, zonal fields dominate over zonal flow and in this case the 

growth of high-m DRBM is also weak. Thus the dynamics of ZFs in the saturation of 

edge fluctuations is important. Also note that the ZFs are decoupled from the ZFLDs.    

 

Transport estimates: We now wish to make an estimate of the transport due to 

DRBM in the edge of a tokamak. These fluctuations typically have large poloidal 

mode number ˆ 1m >  and therefore grow to large amplitudes saturating only due to 

zonal flow instabilities. From a predator-prey model, the saturation amplitude of 

DRBM and diffusion coefficient can be written as 
2 1/2

1/2

(1 ) ( )

( )

k i a e i

e n ideal e

e q R

T L

δφ τ ν ν

γ
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≈

Ω
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2
2

2 2 2

1
(1 )

ˆ ˆ( )

neo a
i e i e

rk k ideal n

q R
D

L
τ ν ν ρ

ω γ γ
≈ +

+
  (17)                                    

     

Tertiary instability - the Kelvin-Helmholtz instability: 
Here we examine the conditions under which the strong velocity shear and magnetic 

shear associated with ZFs and ZFLDs may lead to their break-up due to a tertiary 

instability (e.g. K-H instability). In such conditions the dominant saturation 

mechanism for primary turbulence by the ZFs will become ineffective. For simplicity 

we consider a 1-D zonal flow and zonal field, which are independent of y coordinate: 

0( ) cos ;q x qxφ φ= We use the Floquet technique
9-10

 and take the K-H instability 

perturbation to be ( )sin ( ) KH t

n x yK nq x K y e
γδφ φ= + +∑ . 

 
                                                                      

Considering zonal waves as the equilibrium background for K-H wave, the simple 

form of linearized K-H wave equations can be obtained from Eq. (17), 
2 2 2 21 2

||(2 / ) [ , ] [ , ]KH KH KH KH q qγ φ β γ φ φ φ φ φ−
⊥ ⊥ ± ⊥ ⊥ ±∇ − ∇ ∇ = − ∇ − ∇� � � � � �                                (18) 
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For small ZF amplitudes, we truncate K-H wave equation by keeping the mode 

coupling among three adjacent modes (i.e. 0, 1n = ± ), and then the growth rate of K-H 

instability can be written as 
2 22 2

2 2 2 2

0 2 2 2 2 2

2 2 2 2

0 ||

2 2
0.25 | |

2 2

0.25 | | 2 /

x x
KH q y

x x

q y

K qK K qKq K
q K

K K q qK K q qK

A q K K

γ φ

β β

⊥ ⊥⊥

⊥ ⊥ ⊥

 + −−
= + 

+ + + − 

− −

                      (19)    

 

Note that the K-H instability is restricted to scales 2 2 2
k q K⊥ ⊥> > . To estimate the 

threshold of K-H instability, we simplify by maximizing the driving term, which 

requires 0xK → , 
2 2

yq K>  and ||
ˆ /K s qR∼ , where ŝ  is the magnetic shear. The 

growth rate of K-H mode as a function of dα  and β̂  parameters is then 

( )2 2 2 4 2 4 2 2 2 2

0 0 0 0
ˆ ˆˆ ˆ ˆ0.5 | / | ( / 4 ) | / | / (1 )KH y y d q n e n a q n e iq K k m e L T L q eA L T L sγ α φ βε β τ−= − − +  

Note that the ZFLDs provide an additional effective magnetic shear to stabilize the 

tertiary instability. For simplicity we neglect the ZFLDs effects on tertiary modes, and 

a predator-prey model yields 0 0/q kφ γ α≈ , where 
2 2 2 4

0
ˆ~ y dq K mα α−

.  

 

 
                                                                   

Figure 1 

The threshold of tertiary mode (K-H instability) i.e., 0K Hγ − ≈  could determine the 

density limit. Making use of this condition 0K Hγ − ≈ , we get the dependence of 

critical density crn  on the basic plasma parameters as:  
0.93 0.58 0.12 0.47 1.86 0.19ˆ

cr in I R A s a B− −
∼ .  

Here we have used the following conditions
11

: (1) the convective thermal flux 

entering into edge region is dominant and acts like a source for the edge plasma. The 

convective thermal flux from core is defined as / .GB

nnTD L Const≈  (2) density scale 

length 1/n eL n∼ . Figure 1 shows the density limit boundary in the ˆ
dβ α−  plane.   
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Geodesic acoustic modes: GAMs are the 0,0 ≠== rknm  perturbation in potential 

fields and 0,1,0 ≠== rkmn  perturbations in density, parallel flows, and 

pressure fields. The dispersion relation of electrostatic GAM is  

2 2 2 2 2 2 2 2 2

|| ||(1 ) (1 ) sin [ (1 ) ] | |G i i n x y G kk q k kτ τ ε θ τ φΩ − + − + < >≈ − Ω − + Ω Ω �                 (20) 

For G x gx kq V γΩ − < , and taking the nonlinear term perturbatively, the frequency and 

growth rate of GAM are                                                                            

[ ]
22 1/ 2 2ˆ ˆ ˆ(2 1) ( 2 ); (1 2 ) | / |rG a n a G a d x n a k eq q q mq L q e Tε γ α δφΩ ≈ + ≈ +                   (21)  

The ratio of the growth rates of GAMs and zonal flow gives an enhancement factor:  

( ) ( )2 4ˆˆ ˆ ˆˆ/ /1 2 1 (1 ) ( , )G q a a i d kq q m Fφγ γ β τ α ω− ≈ + − +
 

                                             (22) 

Note that when the factor ( )4ˆ ˆˆ1 (1 ) ( , )i d km Fβ τ α ω−− +  begins to approach unity, 

concurrently the growth of zonal flow diminishes and the growth rate of GAM 

instability enhances.  

 

Coherent nonlinear structures of ITG wave: For 1C > , we study the trapping of ITG 
mode turbulence in secondary ZFs, which produce nonlinear coherent structures with 

saturated ITG mode turbulence and the ZFs nonlinearly sustaining each other with 

trapped and untrapped distributions of primary turbulence. The basic requirements for 

trapping are: (1) the short-scale mode is dispersive in nature; (2) the bounce frequency 

of trapped ITG quasi-particle in ZF potential is larger than the growth rate of ZFs i.e., 
neo

i ZF Bν γ ω< < , Bω  is the bounce frequency of trapped particle.  We look at the 

stationary solutions of the coupled ITG-ZF system described by the WKE and 

vorticity equation 

/ ( / ) ( / ) ( / )k gx k E k xN t V N x x N kω∂ ∂ + ⋅ ∂ ∂ − ∂ ∂ ⋅ ∂ ∂                (23) 

( ) 2 2 3

0(1 ) /neo

t i x q x x y i kk k k Nν φ τ ∗∂ + ∇ = ∇ ∂ + + Λ ∆∫�                                        (24) 

Eq. (23) can be readily integrated to give the constant of motion: 2 ( )xW K f x= + . 

Here
2 2 2( / 4 ); ( ) /16x x y i yK k U bk f x v v U b kτ ′′= + = + − , ,x qv X x Utφ= ∂ = − . The 

bounce frequency of ITG mode near the minima of ZFs shear layer can be obtained 

from the characteristic ray equations for dispersive ITG mode,  
2 2/ 2 ; / 0; / / / .gx x y y x k y qx t V k k b k t k t x k xω φ∂ ∂ = ≈ − ∂ ∂ = ∂ ∂ = −∂ ∂ ≈ − ∂ ∂               (25) 

Here 2ˆ
rk a bkω ⊥≈ − , ( )k y i n i thkγ τ ε η η≈ − , 0.5[1 (1 ) (1 5 / 3)]i i n i nb τ η ε τ ε= + + − + . 

Note that qφ is oscillating in nature and for choice of qφ , we can solve the above 

characteristic ray equations. Let 
3

0 0sin ~ ( / 6)q x x xφ φ φ= −  and with boundary 

condition ~ / 0x xk k t∂ ∂ =  at 0t = . The typical bounce frequency in dimensional form  

01 (1 ) (1 5 / 3) /b i i n i q n se Lω ω τ η ε τ φ ρ∗= + + − + ; /y s s nk c Lω ρ∗ = .                           (26) 

 

The solution of stationary Eq. (23-24) can be obtained from nonlinear self-consistency 

condition: 

2
( ) 0.5 ( ) ( ) ( ) ( )

m

m

f

neo

x i x x T U

f f

U v a dWJ W N W dWJ W N Wµ ν
∞ 

∇ − + ∇ = − ∇ + 
  
∫ ∫              (27) 
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We choose trapped ( )TN W , and untrapped distribution of quasi-ITG particle as 
2 2 1

0

1/ 2 1/ 2

0

[1 ( ) / ] ;

[1 ( ) / ];

U m m

m m

N N W f W f

N f W f W fε

−= + − ∆ >

= + − ∆ < <
                                                  (28) 

Hereε  is the fraction of trapped particles. For dissipation, ( , ) 0ν µ =  and by 

considering nonlinear term up to 3/ 2v , Eq. (27) yields  
3/ 2

0 0 1( ) 0; mV U V V f f Vσ σ σ′′ − − + = − =                 (29) 

Here 
2

0 0.5 (1 )ya bkσ = ∆ − , 
2

1 (1 ) / 3ya bkσ ε= ∆ − , /1T y Ta W ak W∗ ∗= + , 

( / ) 1/(1 )Tb b a W∗= + + , 2

1 (1 ) / 3ya bkσ ε= ∆ − . An exact solution of Eq. (28) gives the 

radially propagating solitary pulse, 

 2

0 1 0 0[5( ) / 4 ] ec [( )( ) / ]V U S h U x Utσ σ σ σ= − − − .                                                (30)    

              

The modulational instability of ZFs, ZFLDs, and GAMs in the background of DRBM 

driven turbulence has been studied. It is shown that the short-scale and long-scale 

ZFs, ZFLDs, and tertiary modes can co-exist (predator-prey). A quasi-steady state of 

such a system could be determined by the comparison of their relative growth rates to 

the neoclassical collisional damping rate. An L-mode could be thought of as a state 

where the growth of ZFs is less or comparable to ion neoclassical collisional rate. (2) 

H-mode can be attained when the ZFs growth rate is larger than neoclassical 

collisional damping, as well as the ZF is stable to the tertiary wave - KH instability. 

(3) Greenwald density limit could be hit if the ZF is unstable to the tertiary mode, if 

0K Hγ − ≅ . From the “Predator-Prey” model for the self-interaction of ZFs and short-

scale background DRBM, the transport in a collisional edge is estimated. From the 

threshold condition for the tertiary modes, a dependence of critical density on other 

basic plasma parameters has been derived. 

 
Reference: 

1. B. N. Rogers and J. F. Drake, Phys. Rev. Lett. 81, 4396 (1998).  

2. R. Singh, V. Tangri, P. Kaw, and P. N. Guzdar, Phys. Plasmas 12, 092307 

(2005). 

3. P. H. Diamond, S. -I. Itoh, K. Itoh, and T. S. Hahm, Plasma Phys. Controlled 

Fusion 47, R35 (2005). 

4. K. Hallatschek and D. Biskamp, Phys. Rev. Lett. 86, 1223 (2001). 

5. N. Chakrabarti, R. Singh, P. K. Kaw, and P. N. Guzdar, Phys. Plasmas 14, 

052308 (2007). 

6.  Krämer-Flecken, S. Soldatov, H. R. Koslowski et al., Phys. Rev. Lett. 97, 

045006 (2006). 

7. P. Kaw, R. Singh, and P. H. Diamond, Plasma Phys. Controlled Fusion 44, 51 

(2002). 

8. S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A. Leontovich 

(consultants Bureau, New York, 1965), Vol. 1, P. 214. 

9. R. Singh, P. K. Kaw and J. Weiland, Nuclear Fusion 41, 1219 (2001). 

10. E. Kim and P. H. Diamond, Phys. Plasmas 9, 4530 (2002). 

11. M. Tokar, Phys. Rev. Lett. 91, 095001 (2003). 

 


