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Abstract. We report on gyrofluid and gyrokinetic numerical studies of edge and core turbulence in
tokamak geometry, with emphasis on the self consistent interaction with the equilibrium. Gyrokinetic
PIC and Vlasov as well as gyrofluid models are given and used in the analysis. Selected nonlinear results
on tokamak rotation and edge turbulence are given.

1. Global Electromagnetic Gyrokinetic Computation

The gyrokinetic particle in cell (PIC) code ORB5 [1] has been extended to kinetic electron
parallel responses. Although based on delta-f techniques,it actually solves a variant of the
total-f gyrokinetic equations. The particle Lagrangian and Hamiltonian are

Lp =
[e

c
A +mv‖b

]
· Ṙ+

mc
e

µϑ̇−H H =
m
2

v2
‖ +µB+eJ0φ (1)

whereJ0 is an orbit averaging operator implemented through sampling over cubic spline basis
functions. The particle coordinates areZp ∈ {R,v‖,µ,ϑ} giving the spatial position of the
gyrocenter, and velocity space coordinates describing theparallel velocity, magnetic moment,
and gyroangle. The particles are actually markers through which the distribution functionf is
solved for via characteristics [2].f is given by

f = FM +δ f δ f = ∑
p

wp

I

dϑ
2π

δ6(z−Zp−aL) (2)

whereFM is a prescribed function of the constants of the motion andwp is the weight associ-
ated with thep-th marker andZp the position of the gyrocenter. The integral overϑ reflects
representation of the particle as a charged ring of radiusρL, with the directed gyroradiusaL

averaging over the fast gyromotion. The Lagrangian for the entire system including the field
potentialφ is given by

L = ∑
sp

Z

dΛ f Lp +
Z

dV
n0Mic2

2B2 |∇⊥φ|2 (3)

with the sum over species and the integrals over phase space and the spatial domain, respec-
tively, andn0 a prescribed density profile controlling the strength of thepolarisation density.
The expression of this latter as a field energy corresponds tothe use of the first order gyroki-
netic Hamiltonian — the second order screening terms of Ref. [3] are approximated by this
field energy term. Full energetic consistency is retained bymaking this approximation in the
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Lagrangian and then keeping the resulting Euler-Lagrange equations intact [4]. The Euler-
Lagrange equations are given by

B∗
‖Ṙ = ∇H ·

c
e

F
B

+v‖B
∗ B∗

‖(mv̇‖) = −B∗ ·∇H µ̇= 0 (4)

for the particle coordinates, where the auxiliary quantities are defined as

F = ε ·B B∗ = B−∇ ·mv‖
c
e

F
B

B∗
‖ = B−1B ·B∗ (5)

with ε the 3D Levi-Civita tensor; henceF is the space-space part of the Maxwell field tensor.
For the field potential, variationδL/δφ finds

∇ ·
n0Mic2

B2 ∇⊥φ+∑
sp

Z

dW eJ0δ f = 0 (6)

where the integral is over velocity space and the sameJ0 operator averaging the spatially de-
pendent potential onto gyrocenters now acts to place the gyrocenters in space. This equation
represents quasineutrality since the field termE2/8π is neglected against the E-cross-B (ExB)
energy due tov2

A ≪ c2 being well satisfied (i.e., the Alfv́en velocity is deeply subrelativistic).
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FIG. 1: Examples of the effects of resolution in ORB5 computations (see text).

In ORB5 the particle loading is according to the energy, magnetic moment, and the canonical
toroidal momentum (in lieu of the minor radius coordinate).This minimises the size of initial
transients in the axisymmetric responses and enters because δ f includes the structure of the
background density and temperature profiles. A common issueis the presence or absence of the
parallel velocity nonlinearity; this is kept in the contribution due toeJ0φ to H in the equation for
(mv̇‖). Without this term one does not even have phase space conservation because theB∗ terms
in Eqs. (4) would no longer form a bracket substructure. However, the effect has been found
in ORB5 to be negligible, indeed small by one order inρ∗ = ρs/a whereρs = cs/Ωi is the ion
sound gyroradius with acoustic speedcs and ion gyrofrequencyΩi. This as well is a resolution
test: with 80M markers in a standard case (ion temperature gradient (ITG) turbulence “global
Cyclone” case detailed in Ref. [5]) withρ∗ = 1/184 switching the nonlinearity in and out made
a difference of about 50% in the delta-f entropyS= ∑pw2

p while in the same case with 320M
markers differences were within the temporal fluctuations in S. With the nonlinearity the two
cases were nearly convergent (Fig. 1, center and right frames).
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1.1. noise and noise control

The issue of noise in PIC methods has been raised repeatedly as a statistical issue. Equivalently,
however, it is a matter of resolution, with the number of particles per active wavenumber serving
in a similar way as the resolution on the velocity space grid in a Vlasov (“continuum”) computa-
tion. If this is insufficient then it is impossible to describe structures involving higher moments,
and the issue enters with such gravity because the usual situation is of drive by temperature
gradients. An example for the above ITG case is shown in Fig. 1(left frame). A systematic
study has been carried out in ORB5 concerning this within simplified “ETG” computations (de-
fined by expressingδ f as particle weights for only one species and setting the other in simple
proportionality toφ without splitting off the flux surface average). It is found that the problems
usually attributable to noise — a strong decrease in the transport and increase in theδ f entropy
S with increasing time — actually result from this insufficient resolution, in agreement with
previous studies using Vlasov methods in which noise is not an issue [6]. The signal to noise
(S/N) ratio diagnostic in ORB5 is a measure of the ratio of delta-f entropy content in a band of
higher values ofk‖qR= (m−nq) to the content in the band with roughly±5. The S/N is above
50 in saturation but drops sharply as the free energy spectrum spreads out. Higher numbers of
particles are found to delay this drop but never prevent it.

In ORB5 a method has been found to counter this effect and allow for essentially indefinite
turbulence saturation similar to fluid and Vlasov models (which necessarily contain numerical
dissipation to contain the cascades [7–10]). Krommes suggested using a simple Krook operator
to provide dissipation [11]. While this acts everywhere in the spectrum, the hope was that it
would indirectly act preferentially on short wavelengths where the tendency to develop larger
values ofw2

p is greatest (the free energy cascade inδ f is always powerful and direct — more
on this below). This method was developed more generally to conserve an arbitrary set of
moments, most specifically ExB flow energy [12]. It appears tohave solved much of the noise
and saturation problem — ETG and ITG turbulence runs with relaxing profiles have been carried
out for as long as 1700a/cs, with the S/N dropping from about 45 to 35 over the range beyond
200a/cs. The slow decay follows slow relaxation of the profile, as with the valueρ∗ = 1/184
the turbulence/transport scale separation is well achieved.

1.2. global studies of plasma rotation

The plasma experiences poloidal rotation as the potential dynamically builds up layers which
have solely radial dependence. On small scales (about 10 to 20ρs) this is a fluctuating com-
ponent which is forced at all frequencies by the turbulence but responds resonantly at the
geodesic oscillation frequency in addition to a component which have zero frequency. Nomen-
clature varies, but these can be referred to as geodesic oscillations and zonal flows, respectively
(“zonal” ↔ flux surface average). They represent eigenmodes of the system whose ratio given
an initial perturbation with purely zonal dependence ofδ f henceφ forms a standard test [13].
However, the issue of wider interest to tokamak phenomenology is the extent to which the
large-scale zonal potential and the ExB rotation that represents can be caused by turbulent or
by equilibrium processes. In the absence of turbulence or other dynamics the sinθ and cosθ
axisymmetric sideband components are such that flows are divergence free and parallel forces
are in balance. This is the essential assumption behind neoclassical theory and therefore one
would expect rotation to be neoclassical [14]. However, there are indications that this might not
be the case [15].

Investigation of this using ORB5 is beginning. In the meantimestudy of it has been carried out
using the global gyrofluid model GEM [16]. Global core modelsare defined by choosing a set
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of tokamak core representative parameters and simulating the region typically 0.2 < r/a < 1.0
using a global field aligned coordinate system [17] in which the large-scale MHD component
determines the Shafranov shift and Pfirsch-Schlüter current self consistently [18]. Broadband
fluctuations are initialised and the entire system is allowed to relax — no sources are applied,
a sink atr = a keeps the dependent variables at zero thereby removing fluctuation energy [19],
and the turbulence is driven by conservative transfer out ofthe axisymmetric component into the
eddy components. Even withρ∗ = 1/200 the relaxation of the profiles is below ten percent over
the run length of 800a/cs. Cases withρ−1

∗ varying from 50 to 800 (ITER scale) in successive
steps of factors of two were taken.

FIG. 2: Flow profile results in GEM for a shaped tokamak case with ρ∗ = 1/200(see text).

Flows are diagnosed via the sinθ component of the divergences in the ion gyrocenter conti-
nuity equation [18]. If the linear (parallel, magnetic drift, E-cross-B) compression terms are in
balance then equilibrium (“neoclassical”) processes control the flows as turbulence is a small
correction. Turbulence forcing scales asρ2

∗ while the equilibrium divergences scale asρ∗ sim-
ply. The GEM results find that the neoclassical processes become more dominant the larger the
tokamak, with the crossover regime nearρ−1

∗ = 200 for smooth profiles or about 400 for profiles
with detailed structure. For large tokamaks zonal flow generation is too weak by comparison to
play a central role. For finite beta they are weakened still. Arepresentative result for a shaped
case withρ−1

∗ = 200 representative of present day medium size tokamaks is given in Fig. 2. The
finite ExB profile divergence (vE) resulting from the profileφ(ra), and its compensation by the
toroidal drift and parallel flow (v‖) divergences is shown by the near-zero total divergence (v).
The electron density variation on which the fluctuations arestill visible is shown in the right
frame. The turbulent zonal flows are barely visible as unsteadiness on the otherwise smooth
profile of the ExB divergence. Forρ−1

∗ = 400 and larger the zonal flow component is no longer
visible. This indicates unlikelihood that turbulence can determine the ExB rotation profile on
large radial scales. However, the moment variable closure in the model is necssarily dissipa-
tive (otherwise, no reasonable neoclassical equilibrium is found). The result remains open to
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criticism on these grounds. Investigation with ORB5 has a prerequisite that the neoclassical
equilbirium should be found before investigation is done with the turbulence. At the time of
this writing investigation is ongoing, with demonstrationof a neoclassical rotation profile only
just achieved. A result on the rotation profile in the presence of turbulence using the sideband
divergence diagnostic on long-term saturated should emerge in the coming months.

2. Gyrokinetic Theory and Global Total-f Computation

The Lagrangian field theory method underlying the ORB5 model ultimately rests on the La-
grangian/Hamiltonian field theory of gyrokinetics by whichthe particle Lagrangian in electro-
static [3] or electromagnetic [20] form is placed within thestructure of a total Lagrangian for
the particle/field system [21,4,22]. Computations usually require an approximated version of
this to be made tractable, but as long as this is undertaken atthe level of the particle/field La-
grangian, the basic consistency of the theory is guaranteed. Indeed, this is behind the basic
proof of energy conservation in the ORB5 model whose predecessor was given in Ref. [23].
The linearisation of the polarisation by the electrostaticmodels is an example of how to do
this properly. For edge turbulence and overall dynamics, however, the scale separation is more
marginal and indeed for such events as large scale MHD phenomena it is absent. If the back-
ground density is to be allowed to change significantly (i.e., build a pedestal or suffer a gradient
collapse) then the polarisation must be nonlinear. Moreover, edge turbulence is fundamentally
electromagnetic [24,25].

With this in mind the electromagnetic Lagrangian in the parallel canonical momentum for-
mulation of Ref. [20] is taken as a starting point and the modelformulated as a field theory
following the methods cited above. The model is called FEFI (full electrons, full ions) and
represents a total-f electromagnetic gyrokinetic model which is in principle capable of global
simulation. The first version of this concentrates on the ability for the large scale MHD pro-
cesses to relax toward equilibrium away from which the turbulence always disturbs them. Hence
gyroaveraging is neglected and long-wavelength forms are used in the polarisation terms. These
restrictions will be relaxed in future work. The Lagrangianis

L = ∑
sp

Z

dΛ
[(e

c
A + pzb

)
· Ṙ+

mc
e

ϑ̇−H
]

f −
Z

dV
B2
⊥

8π
(7)

where the Hamiltonian, generalised potential, and squaredExB velocity are

H = m
U2

2
+µB+eφG φG = φ−

m
e

v2
E

2
v2

E =
c2

B2 |∇⊥φ|2 (8)

and the parallel velocity functional and perturbed magnetic field strength are given by

U =
1
m

(
pz−

e
c
A‖

)
B2
⊥ =

∣∣∇⊥A‖

∣∣2 (9)

with dV anddW the space and velocity space volume elements, anddΛ = dV dW is the phase
space volume element. The sum is over species andm ande are the mass and charge of each
species. The resulting gyrokinetic equation is

B∗
‖

∂ f
∂t

+∇H ·
c
e

F
B
·∇ f +B∗ ·

(
∂H
∂pz

∇ f −
∂ f
∂pz

∇H

)
= C( f ) (10)

whereF = (∇A)−(∇A)T andB∗ = B− pz(c/e)∇ ·(F/B) andB∗
‖ = b ·B∗. Here we approximate

F ≈ (RB/I)F0 with I = R0B0 a constant and∇ ·F0 = 0, so thatB∗
‖ = B. We assume arbitrarily
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weak collisionality so that the collision operatorC consists of hyperdiffusion inpz ands (actual
collisions are to be implemented later). The spatial coordinates{x,y,s} describe a unit-Jacobian
Hamada global field-aligned system [17], so thatdV = dxdyds. The velocity space grid is
on {pz,µ} so thatdW = 2πm−2Bdpzdµ. The self consistent field equations resulting from
variation ofL with respect toφ andA‖ are

∑
sp

Z

dW

[
e f +∇ ·

f mc2

B2 ∇⊥φ
]

= 0 ∇2
⊥A‖ +

4π
c ∑

sp

Z

dW eU f= 0 (11)

giving quasineutral polarisation and shear-Alfvén induction, respectively (note here thatU in
the integral also involvesA‖).

The list of dependent variables isf (x,y,s, pz,µ) andφ(x,y,s) andA‖(x,y,s), with f advanced
in time with Eq. (10) and thenφ andA‖ solved using Eqs. (11). The collisionless part of Eq.
(10) is a generalised bracket decomposed into six pieces each computed using the 4th-order
Arakawa method. This and the dissipation are combined in a 3rd-order stiffly stable timestep,
in a combination known from edge turbulence[26].

The similarity to the ORB5 model should be obvious — the second order term in the FEFI
Hamiltonian multiplies the dependent variablef but in ORB5 becomes a field energy term as
f is replaced byFM, kept only for ions and integrated ton0, and correspondingly the field
potential term in polarisation involvesn0 in ORB5 but the entiref in FEFI. In ORB5 the model
is electrostatic so thatA‖ is taken to zero henceU = pz/mbecomesv‖. Otherwise, however, the
footing they are on is the same: ORB5 uses a delta-f method but isnot a delta-f model.

The FEFI code has captured the global Alfvén oscillation, whose dissipation relaxes the par-
allel current into Pfirsch-Schlüter equilibrium. With the pressure profile contributing tothe
magnetic drifts, axisymmetric parallel currents result and describe the global geodesic Alfvén
oscillation. This damps due to the combination of resistivity and electron Landau damping.
The resulting magnetic field is none other than the Shafranovshift. Hence the MHD equi-
librium and its disturbance by any present dynamics is computed self consistently. This is a
necessary test for any electromagnetic model attempting tosimulate edge turbulence with self
consistent profiles, not just a gyrokinetic one (for GEM see Fig. 3 of Ref. [18]). Computation
of edge turbulence on the entire flux surface has just been done in a case with self consistent
sources. The grid was 64×512×32 for the domain 0.85< r/a < 0.99 in (V,ϑ,ξ) coordinates
(see Sec. V of Ref. [17]). The velocity space grid was 32×16 for−5< pz < 5 and 0< µB< 10
in units of (mT0)

1/2 and T0 for each species, respectively, for reference valuesT0 = 200eV
andn0 = 2×1019m−3 andB0 = 2.5T andR= 3.3a = 1.65m. The actual parameters them-
selves are results;T for both species varied between 100 and 400eV andn was between 1 and
3×1019m−3.

3. Gyrokinetic Turbulence Energy Transfer and Saturation

Although the general aim for electromagnetic gyrokinetic is global simulation, it remains useful
to study the details of internal processes in a fluxtube modelin which the details of energetic
consistency are such that the range of control tests one can make is wider (e.g., it is impossible
to remove magnetic trapping in FEFI while still keeping the grad-B drift as both arise from the
same term inH). By contrast to ORB5 which used a delta-f method, this is actually a delta-f
model in which the dynamics is linearised except for the perpendicular nonlinearities entered
into by the part ofH due to the perturbed fields. The derivation of this delta-FEFI model (and
ultimately the best derivation of the GEM model) is given in Ref. [27]. The equations are

∂g̃
∂t

+
cFxy

eB2 [H̃, h̃]xy+
Bs

B
[H0, h̃]zs+K (h̃) = C( f̃ ) (12)
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for g̃ = δ f +(e/T)FM(v‖/c)A‖ and h̃ = δ f +(e/T)FMφ with curvature drifts given byK =

∇(µB−mv2
‖ logR) ·(cF/eB) ·∇{x,y} and unperturbed and perturbed Hamiltonian pieces given by

H0 = mv2
‖/2+µBandH̃ = eJ0(φ− [v‖/c]A‖), in which forms the subscriptsx andy indicating

only those derivatives of the dependent variables are kept while all the geometric information
depends only ons in standard fluxtube ordering [28,29,17]. The linearised field equations are

∇2
⊥A‖ +

4π
c ∑

sp
dW ev‖J0 f̃ = 0 ∑

sp
dW

[
eJ0 f +e2FM J2

0 −1
T

φ
]

= 0 (13)

andJ0 = J0(k⊥ρL) is the zeroth Bessel function applied in wavenumber space —x andy may
be Fourier transformed since the geometry depends only ons. The collision operatorC is a
standard pitch angle scattering operator where the electrons are scattered by both species and
the ions among themselves. The wavenumber space isk⊥ = {kx,ky} with magnitudek⊥.

FIG. 3: Beta scaling of the ExB ion heat transport for delta-FEFI, with and without trapping,
with comparison to the fluxtube GEM result (leftmost), and withcomparison to linear growth
rates (left next) Nonlinear energy transfer spectrum in delta-FEFI (right frames), where positive
and negative.

This model has been used to explore the general behaviour of edge turbulence as well as
cascade dynamics and nonlinear spectral transfer. The transfer function is found by Fourier
deomposing each nonlinearity ink⊥ and contracting with the complex conjugate of eithereJ0φ
or (T/FM)δ f and summing over species, for the ExB and thermal free energytransfer functions,
respectively. The spectra of these are shown in Fig. 3 (rightframes). The results show that the
latter is of stronger magnitude by a factor of about 5 and is negative at low-k⊥ and positive with
equal total at high-k⊥. The ExB transfer function is of opposite sign everywhere except in the
dissipation rangek⊥ρs > 1. This indicates net energetic input/output which compensates the
linear coupling effects (mostly throughJ‖ but also throughK [30]). A strong direct transfer
tendency is found for∑sp(δ f )2(T/2FM) while a subdominant inverst tendency is found for
(1/2)∑sp(eJ0φ)δ f , the thermal free energy and ExB energy densities, respectively. The form
of this signal is exactly the same as found previously for Hasegawa-Wakatani turbulence [31]
and also for the three dimensional fluid models of Refs. [8,30]. The indication is that these
transfer tendencies are always present (indeed, in the fluidmodels the density fluctuation acts
as a simplification forδ f and the vorticity fluctuation represents∑speδ f ). The strength of the
nonlinear transfer dynamics is affected by linear dissipative coupling mechanisms, but not its
character.

The effect this transfer dynamics has on scaling and turbulence saturation can be found by
testing the linear growth rate and mode structure against the fluxes and mode structure of the
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fully developed turbulence. The saturation itself is due tothe transfer of(δ f )2 free energy
to subgrid scales where it is eliminated by dissipation (seealso Figs. 1–3 of Ref. [8] for the
fluid model). But the scaling is also strongly affected by the inverse-transfer due to the ExB
component. Besides merely shifting the spectrum toward longer wavelength, it also adds to the
drive of a mesoscale MHD component (k⊥ρs∼ 0.1, in this case corresponding to toroidal mode
numbers circa 10 to 15). This component, which does not produce the dominant linear modes,
ultimately represents the peak of the spectrum of all the ExBtransport channels: particle, and
electron and ion heat fluxes. In the scaling, it causes a strong increase of the fluxes (all three
channels always scale together in edge turbulence) with beta at values well below the traditional
MHD limit, which has no counterpart in the linear growth rates (Fig. 3, lower left). Comparisons
of the flux scalings with and without magnetic trapping (variation ofB in H0) in delta-FEFI and
also to the GEM results shows all three models show similar trends, with trapping accounting
for an ehnacement which is strongest at lowest beta (Fig. 3, upper left). The conclusion of such a
result is that linear instability modelling is not a useful guide for tokamak edge phenomenology.

4. Edge Turbulence Gyrofluid Studies

Investigations of a ELM scenario involving a large ideal MHDinstability are studied. It is found
to saturate upon its own self generated turbulence, in a broad spectrum reaching below the ion
gyroradius scale. A depiction of the electron density at themoment of peak flux is shown in Fig.
4. Model geometries for an X-point region are developed. Global self consistency, in terms of
the time dependent parallel current determining the magnetic structure, is the new theme. This
is required to treat the divertor region with the abovementioned Alfvén oscillation. Geodesic
acoustic oscillations (GAM) have been studied with GEM and within a simpler 4-field fluid
model. We will present results on parameter dependence of GAMs in the presence of ergodic
fields. This work is being published elsewhere.
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