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Abstract. GAMs oscillate between states of strong rotation and up-down asymmetric plasma compres-
sion. Hence, at first glance the natural turbulent drive (or damping) mechanisms for them is either a
direct boost of the rotation – via Reynolds stress – or the creation of asymmetric pressure distributions
– via transport. However, an up-down asymmetric pressure can also be created by the divergence of the
diamagnetic drifts, if there is a perturbation in the diamagnetic drift velocity, i.e., of the overall pres-
sure gradient. That in turn may fluctuate due to any modulation of the flux surface averaged turbulent
transport. On the other hand, a modulation of the turbulent transport due to the GAMs themselves is
expected to happen in the tokamak edge, and has been observedearly on in simulations and recently
in many experiments. In turbulence simulations for edge parameters, the described effect tendencially
is a strong driver of the GAMs of equal importance to the othertwo. As a striking consequence, the
coupling of diamagnetic velocity and GAM can produce propagating fronts of high flow velocity and
transport, which closely resemble avalanches – without necessity of a critical gradient. The diamagnetic
flow drive is strong enough to advance the flow and transport layer in radial direction – although the
linear dispersion relation would just result in a localizedoscillation! An interesting consequence of the
diamagnetic drive mechanism is that it offers the possibility of direct excitation of GAMs by resonantly
modulated external heating (replacing turbulent transport with heating power). If the GAMs are detected
by Doppler reflectometry, the achievable efficiency is certainly enough for diagnostic purposes such as
to activelyprobe the GAM frequencies or to measure the turbulence response to the GAMs. Particularly
exciting however is the prospect of a way toartificially set up a GAM pattern to control the transport.

1. Introduction

Geodesic Acoustic Modes (GAM), poloidal flows oscillating at the characteristic acoustic fre-
quency of a tokamak or stellarator, are an ubiquitous edge plasma phenomenon in magnetic
fusion devices [1, 2]. In recent years they have dramatically gained experimental interest and
are candidates for applications ranging from plasma diagnostics [3] to transport control [2].

GAMs and the somewhat better known stationary Zonal Flows arise as the two linear eigenstates
from the coupling of perpendicular plasma rotation and parallel sound waves by magnetic inho-
mogeneities such as due to toroidal curvature. Both have virtual no radial velocity component
whence they are in practice completely stable against any radial pressure gradients. Although
turblence driven stationary Zonal Flows have been theoretically predicted somewhat earlier than
the GAMs, the latter were detected first in experiments, due to their clear signature of a rather
well defined frequency.

GAMs oscillate between states of poloidally homogeneous rotation and (for a tokamak) up-
down antisymmetric plasma compression. Hence, at first glance the natural turbulent drive (or
damping) mechanisms for them seem to be either a direct boostof the rotation – via Reynolds
stress – or the creation of antisymmetric pressure distributions – by vertical oscillations of the
turbulent heat transport – which may both be synchronised with the flow oscillation by its
shearing action.
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2. Mechanism

However, an up-down antisymmetric pressure can also be created more indirectly by the turbu-
lence if it perturbs the ion diamagnetic drift velocity or more accurately the diamagnetic heat
flux, e.g., by local flattening of the overall radial pressuregradient due to turbulent transport.
Due to the inhomogeneous magnetic field, the perturbed ion diamagnetic flow and heat flow will
exhibit an up-down antisymmetric divergence which createsa pressure perturbation exciting the
GAM. (While the diamagnetic flows of the electrons have exactly the opposite divergence, their
asymmetries are instantaneously erased due to the much greater electron mobility along the
magnetic field lines.)

This requires a diamagnetic velocity modulation in resonance with the GAMs, and thus a mod-
ulation of the flux surface averaged turbulent transport in the proper phase relation with the
oscillating flow. On the other hand, a modulation of the turbulent transport due to the GAMs
themselves is expected to happen in the tokamak edge, and hasbeen observed early on in sim-
ulations [4] and recently in many experiments [5].

In the simulations [4] it was found that the turbulent transport is modulated by the shear flow
such that it is essentially proportional to the local flow velocity in electron diamagnetic direc-
tion. This may be described roughly by the empirical relation

δQ = γ∂2
r (Q−αvθ +βvdi). (1)

with appropriate empirical constantsα,β,γ. The form of this relation is severely restricted by
Gallilean invariance inθ direction of the fundamental equations, mirror symmetry with respect
to the minor radiusr and the fact that the poloidalE×B velocityvθ is only important through
its effect on the phase velocity. For example, the relation cannot directly involvevθ but only
its derivatives,vθ. The contribution from the poloidal ion diamagnetic velocity vdi occurs,
since the phase velocity is the difference ofvθ and a mode specific constant timesvdi. γ is
typically rather large, so that essentiallyδQ≈αvθ−βvdi as for the relevant radial wavenumbers
of GAMs k2

r γ . 1. For simplicity the contribution from the diamagnetic velocity outside the
radial derivative operator has been neglected even though in principle the transport for very low
wavenumbers is reduced if the ion diamagnetic velocity goesup, i.e., if the gradient decreases.

Neglecting neoclassical transport one obtains from the radial heat transport balance a modula-
tion of the local ion diamagnetic velocity equal to

−iωδvdi = −iω∂rδpi = −2
3

∂2
r δQ = −2α

3
∂2

r vθ +
2β
3

∂2
r vdi, (2)

δvdi =
2iαk2

r vθ
3ω+2iβk2

r
(3)

with the dimensionless unitsL⊥ = ρi , t0 = R/(2
√

T0/mi) and the fluctuation variables

n =
δnρ∗

n0
, Ti =

δTiρ∗

T0
, φ =

eδφρ∗

T0
(4)

The fluid ion density and temperature equation equations forthe GAMs may be written as

ṅ−∆
(

φ̇+ ṅ+ Ṫi
)

−C(φ+n+Ti) = 0 (5)
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∂rQ = 0, (6)
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where for simplicity of the following argument, in (6) parallel sound waves and heat conduction
have been omitted. The geodesic curvature operator

C≡
(

∇× b

B

)

·∇ ≈ 2

(

b

B
×κ

)

·∇, κ = ∂‖b, b =
B

B
(7)

computes the divergence of theE×B and diamagnetic flows fromφ andn,Ti, respectively. In
circular geometry the geodesic curvature terms are simplyC = sinθ∂r . The finite larmor radius
(FLR) (or diamagnetic) heat flux requires the factor 7/2 instead of 1 in front of the second and
third occurance ofTi in (6), which is shown below to be essential for the diamagnetic drive
mechanism. The electrons may simply be taken to be adiabatic,

n = φ−φ0 (8)

whereφ0 ≡ 〈φ〉 is the flux surface average of the electric potential and ion and electron den-
sity are equal due to quasineutrality. Assumingk2ρ2

i ≪ 1 (as is corroborated by turbulence
simulations), the Laplace operators in (5,6) can be neglected, except when taking the flux sur-
face average of (5), since thenn0 ≡ 〈n〉 = 〈φ〉−〈φ〉 = 0 due to equation (8), and the Laplacian
contains theonly time derivatives in the equation. The flux surface average of(5) reads

−∆
(

φ̇0+ Ṫi,0
)

−〈C(φ−φ0+n+Ti −Ti,0)〉 = 0 (9)

⇔−∆
(

φ̇0+ Ṫi,0
)

−〈C(2n+Ti −Ti,0)〉 = 0. (10)

Integrating this equation overr, noting that∆ ≡ ∂2
r andvθ = ∂rφ0, vdi = ∂r(n0 + Ti,0) = ∂rTi,0

yields
v̇θ + v̇di = −〈(sinθ)(2n+Ti −Ti,0)〉. (11)

Theθ-dependence of the fluctuations can be obtained by combining(5) and (6), neglecting now
the Laplacian and taking into account thatQ is independent ofθ,

2ṅ+ Ṫi − Ṫi,0−
1
3
C(8φ+8n+13Ti) = 0. (12)

⇔ 2ṅ+ Ṫi − Ṫi,0−
1
3
C(8φ0+16n+13Ti) = 0. (13)

Using the additional assumption, thatω/kr ≫ 1, i.e., that the phase velocity is much larger than
the curvature drift velocity, one can neglect the curvatureterm acting onn andTi −Ti,0 in (13)
and write

2ṅ+ Ṫi − Ṫi,0 =
1
3
C(8φ0+13Ti,0) =

1
3

sinθ(8vθ +13vdi). (14)

Inserting (14) into the time derivative of eq. (11) and carrying out the flux surface averages
results in

v̈θ + v̈di = −1
6
(8vθ +13vdi) (15)

With ωGAM = 2/
√

3 in this simple model, the GAM velocity obeys thus the equation

ω2(vθ +δvdi) = ω2
GAM

(

vθ +
13
8
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)

, (16)

resulting in the dispersion relation
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Figure 1: Color coded plots of GAM poloidal flow velocity (top), ion diamagnetic velocity
(middle), turbulent ion heat flux (bottom) versus time and minor radius from a fluid turbulence
simulation for parameters from the transitional regime [4]. kr,max = 0.4 takingβ ∼ 3χ, where
χ is the heat diffusivity, which corresponds to a preferred GAM-Wavelength of about 20 in the
units of this figure.

Note that without the FLR heat flux in eq. (6) the factor 13/8 in this equation were in fact be
one and the diamagnetic terms would cancel exactly. The described GAM drive mechanism
indispensibly requires the FLR heat flux.

To lowest order inα the dispersion relation yields

ω ≈ ωGAM+
5
8

(

i
3αk2

r

9ω2
GAM+4β2k4

r
+

2αβk4
r

ωGAM(9ω2
GAM+4β2k4

r )

)

. (18)

The imaginary component indicates growth of the GAMs provided thatα is positive, i.e., that
local poloidal flows in electron (ion) diamagnetic direction are accompanied by maxima (min-
ima) of turbulent transport (as was observed computationally [4] and experimentally [6]).

The growth rate in Eq. 18 exhibits a maximum at a wavenumberkr,max=
√

3ω/(2β) depending
on the sensitivityβ of the turbulence to the gradients (essentially the differential diffusivity,
about 2-3 times the turbulent diffusivity). Nonlinear effects beyond this toy model, the other two
turbulent drive/damping terms mentioned above, and dissipation likely will reduce the growth
rates overall while still basically conserving the wavelength scaling.

Fig. 1 shows a flux surface averaged flow velocity, ion diamagnetic velocity, ion heat flux versus
time and minor radius from a fluid turbulence simulation for parameters from the transitional
regime [4]. Note the characteristic diamagnetic-velocitydouble-layers caused by the ion heat
flux modulation in phase with the GAMs. About 30% of the GAM-drive in this case stem from
the diamagnetic velocity modulation.

Whether the above mechanism is an effective driver of the GAMs depends on the strength of
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Figure 2: plots of flow (top) and turbulent heat flux (bottom) for the time evolution of an initially
isolated single GAM peak

the transport modulation, the geometry controlling the importance of the diamagnetic drifts,
and the ratio of turbulence time scales and GAM frequency. Itis however persuasive that the
estimate of the GAM wavelength derived from the above argument agrees with the observed
one. In turbulence simulations for edge parameters, the described effect tendencially is a strong
driver of the GAMs of equal importance to the other two.

3. Consequences

As a striking consequence, the coupling of diamagnetic velocity and GAM can produce propa-
gating fronts of high flow velocity and transport, which closely resemble avalanches – without
necessity of a critical gradient: Fig. 2 shows the time evolution of an initially isolated single
GAM peak (with turbulence) for identical background parameters as Fig. 1. The diamagnetic
flow drive is strong enough to advance the flow and transport layer in radial direction (the
preferred wave-number derived above fixes the phase velocity considering that the GAM fre-
quency is mostly determined by linear physics) – although the linear dispersion relation would
just result in a localised oscillation!

An interesting feature of the diamagnetic drive mechanism is that it offers the possibility of di-
rect excitation of GAMs by resonantly modulated external heating (replacing turbulent transport
in (1) with heating power). If the GAMs are detected by Doppler reflectometry, the achievable
efficiency is certainly enough for diagnostic purposes suchas toactivelyprobe the GAM fre-
quencies or to measure the turbulence response to the GAMs. Particularly exciting however is
the prospect of a way toartificially set up a GAM pattern to control the transport.
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