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Abstract. In the approach presented here we combine theoretic aspects and experimental results in order to 
obtain threefold information on intermittency and edge localized mode (ELM) dynamics using: a) multifractal 
analysis, b) level-crossing properties of plasma density time series and c) stochastic catastrophy theory (CT). 
Intermittency properties of the MAST spherical tokamak (L-, H- and dithering H-mode) are considered. 
Multifractal (MF) analysis suggests that each magnetic confinement device has distinct MF spectral 
characteristics and that confinement modes (L-, H- and dithering H- modes) exhibit distinct MF spectral 
features. Also, cascade processes in different tokamak devices are distinct in spite of some universal common 
features. In the second approach intermittency is studied by considering solely the clustering of level-crossings 
of turbulent signals and we show that it is related to particles clustering and possibly to accumulation of 
vorticity. Finally, a reliable estimate of the number of equilibrium states and transitions (bifurcations) between 
these states is determined. This is important for determining the L-H transition as well as for identifying zonal 
flow formation. In addition we show that one may infer from experimental data that the ELMs are catastrophic 
bifurcation events. 
 
1. Introduction 
 
Study of turbulence in magnetic confinement devices represents one of the most important 
issues in the pursuit of fusion energy production since turbulence hinders confinement, 
suppresses reactions as it causes particle and energy losses. Control of turbulence requires a 
thorough knowledge of its dynamics in the core of magnetic confinement devices as well as 
on the edges beyond the last closed flux surface, in the region known as the scrape-off layer 
(SOL). A major breakthrough in the confinement improvement occurred by the end of the 
eighties, when the high confinement (H-mode) was discovered in contrast to the well known 
L- or low confinement mode [1]. The H- or high confinement mode manifests itself by self-
organization of a region just inside the poloidal field separatrix where the transport 
coefficients are reduced by up to an order of magnitude compared with  the L-mode forming 
a pedestal in the plasma pressure. As a consequence an improvement in the global 
confinement is usually increased by a factor of two in the case of toroidal devices while it is 
in the order of ~20% in the case of large helical devices (LHD). The thickness of this barrier-
type region is about equal to the ion poloidal gyroradius or the width of an ion banana orbit. 
 
Properties of intermittency both in the case of neutral fluids and plasmas are usually deduced 
from the analysis of temporal and/or spatial fluctuations of one or several relevant quantities. 
In the case of neutral incompressible fluids one or all three components of the fluid velocity 
represent the basic quantity from which all other relevant quantities, such as dissipation, may 
be derived. In the case of confined plasmas these quantities are usually the ion saturation 
current, recorded at one or more spatial locations, from which plasma density fluctuations 
may be inferred and floating potential recorded at different poloidal positions from which 
radial velocity fluctuations may be determined. In spite of many universal features these two 
types of turbulence have important differences. Nonlinearites in plasma turbulence are more 
numerous having different spectral cascade directions in addition to the most important E×B 
nonlinearity, leading to more complex fluctuating characteristics. Also, time and space 
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measurements in plasmas lead to different information on the structure of turbulence. 
Turbulence in confined plasmas is created and damped at the same spatial location where the 
measurements are taken so that spatial and temporal informations are interwoven and Taylor's 
frozen flow hypothesis cannot be applied, a common practice in neutral fluid turbulence 
studies. For the same reason the inertial range [2], may exist only locally in space or in time, 
and the extent of this range changes along the temporal scale as well as along space, for 
example along poloidal direction. 
 
Existence of long-range correlations, noticed in several magnetic confinement devices, 
suggested that scaling models with a single parameter are appropriate at large temporal scales. 
However, at small scales, characteristic for intermittency more parameters are needed. As a 
consequence, a need for multifractal analysis  was recognized recently and several studies 
were devoted to this aspect of plasma turbulence [3, 4, 5, 6, 7]. In Section 2 we present, based 
on a new approach, main multifractal features of L and H mode turbulence.  
 
Two features of intermittency are its clustering property and the variability in amplitude. 
Namely, different events cluster together creating uneven density space and time, and events 
reflected in the highly variable amplitude are dispersed in space and time disproportionately. 
Much insight into the nature of intermittency may be gained from the study of approximations 
of turbulent signals which retain only the zero-axis crossings (frequency) information [8, 9]. 
In Section 3 the clustering properties of these signals are studied based on variance properties 
of the zero-crossings number in a given time period. 
 
In the studies of strong turbulence [10], the following Langevin equation was obtained as a 
model for the evolution of turbulence amplitude 
                                                                                        

 ( ) ( )dx x x W t
dt

σ+ Λ = , (1.1) 

 
where Λ(x) is a deterministic amplification, σ is the diffusion coefficient (assumed constant),  
W(t) is a Wiener process (i.e. idealized Brownian motion) and x is the amplitude as stochastic 
variable. In Section 4 we relate this equation to the stochastic catastrophy theory and to the 
method presented in Section 4 obtaining new insight into the nature of edge localized modes.  
The conclusion is presented in Section 5.  
 
2. Multifractal Analysis of Turbulent Signals 
 
The ion saturation current fluctuations of reciprocating Langmuir probe installed at the edge 
of magnetic confinement devices, the quantity used in present analysis, is assumed equivalent 
to density fluctuations [11]. Recent experimental studies have suggested that intermittency in 
the SOL of magnetic confinement devices is caused by nonlocal coherent structures denoted 
as blobs or avaloids [12], which are essentially large-scale structures with high radial velocity, 
ejected radially towards the wall and encountered intermittently in SOL. These structures lead 
to a direct loss of matter and energy and hence have a high impact on confinement in contrast 
to the second type of coherent structures encountered in fusion devices, which represent 
locally organized fluctuations and which, due to their non radial propagation, contribute less 
to the loss of confinement. The intermittency properties of the MAST spherical tokamak (L-, 
H-, and dithering H-mode) are presented here whose MF spectra were generated by consistent 
use of the measure given by  
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where c is a constant. The slope of two-point correlation function using this measure yields 
intermittency exponent closer to the corresponding value for neutral fluids than the values 
obtained from other measures. In Fig. 1 the ion-saturation current fluctuations of the 6861 L-, 
9031 dithering H- (L/H) and the 5738 H-mode are presented, from left to right respectively. 
Strong ELM dynamics may be easily noticed in the H-mode while the number of large 
amplitude bursts in the L/H mode is considerably higher than in the L-mode. 
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Figure 1. Normalized ion-saturation currents of L-, L/H, and H-mode from left to right respectively.  
 
The large deviation spectra of these time series are presented in Figs. 2 and 3 on different 
scales, namely for Δt=2³,..., 2⁷. The Hölder exponent α, shown on the x-axis, quantifies the 
scaling properties of the process at a given time so that lower values correspond to more 
abrupt variations. The y-axis represents the probility of occurrence of α in a time series. The 
most striking feature of these spectra is their departure from a pure bell-shape and concavity 
and is a good example where Large Deviation Spectra provide more information than 
Legendre spectra, which are strictly concave although they may be asymmetrical.  

Figure 2. Large Deviation Spectra of the L-mode signal 6861 (left) and the dithering H-mode 9031 
(right) of the MAST device for five different scales Δt=2³,..., 2⁷. 
 
Their shape reflects existence of several multiplicative laws underlying the cascade processes 
so that there is a lumping of measures whose supports are disjoint. The spectrum of the 
lumping of two measures resulting in a non concave spectrum is presented in Fig. 4. It is 
evident that the L-mode has more complex multifractal structure in the sense that there are 
more α-values at which the irregularity of the spectrum occurs (i.e. more phase changes) than 
in the case of dithering H-mode. Hence, more measures are lumped and consequently the 
cascade mechanism and energy transfer is more complex in the case of L-mode. The right-
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hand slope of the spectra, both in the case of L- and the L/H- mode, is larger than the left-
hand slope, indicating rich variety of strong singularities and their gradual probability of 
occurrence. The location of the most probable Hölder exponent α₀ for the L-mode is α₀0.6׽ 
and slightly larger α₀0.7׽ for the L/H- and H-mode. The width of the spectrum, defined as 
the max minα α− , is larger in the case of L-mode due to the stronger intermittency effects. 
Moreover, more irregular instants (degenerate singularities) of fluctuations are present in the 
L-mode than in the other modes since in the former case the width max 0α α−  is larger than 
for other modes. The spectrum of the H-mode (Fig. 4) clearly reveals the contribution of 
ELMs (strong singularities of the spectrum) while weak singularities define a concave part of 
the spectrum which shows no signs of lumping.   
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Figure 3. Large Deviation Spectrum of the H-
mode 5738 for five different scales. 
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Figure 4. The spectrum of two lumped measures 
is the maximum of the individual spectra.  

 
3. Clustering Properties of Turbulence Signals 
 
Zero-crossing (or crossing of any particular level of interest) may offer important insight into 
the underlying process whose temporal variations are studied. The average number of zero-
crossings of stationary gaussian process in a specific time interval may be analytically 
determined and is given by the celebrated Rice formula [13]: 
   
 

0
( ) lim ( ( )) ( ) /

n
N t x t x t t dt

τ
δ

→∞
= ∂ ∂∫  (3.1) 

  
where δ(x) is the Dirac delta function. Important information on the clustering properties of 
the signal is however contained in the expression for the variance of the number of zero 
crossings. The expression for variance again may be derived analytically [14], and is directly 
proportional to the time interval τ, i.e. <N2(t)> ~ τ. Based on this expression for gaussian 
process the goal is to contrast clustering properties of turbulent signals with the white 
gaussian noise. For this purpose a running average within a time interval τ of the number of 
zero-crossings in τ is evaluated. The fluctuations of the running average are δN(τ)=N(τ)-
<N(τ)>, where the brackets denote long-time average, possibly the time of the whole signal. 
We are interested in the scaling of the variance 
 

 
1/21/2 22 2( ) ( ) ( ) .N N N μδ τ τ τ τ⎡ ⎤= −⎣ ⎦ ∼  (3.2) 
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For a white gaussian noise the clustering exponent is μ=1/2.  Since white noise has no 
clustering, the value of 1/2 indicates lack of clustering. In Fig. 5 we compare the standard 
deviation of the running density fluctuations for a neutral fluid (left) and the 6861 L-mode 
(right). Two scaling intervals of the type (2.2) appear dividing the scales of interest into two  
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Figure 5. Standard deviation of the running density fluctuations vs. τ for incompressible fluid 
turbulence (left) and for the 6861 L-mode plasma turbulence (right).    
 
groups which we interpret using the Taylor's frozen flow hypothesis. The scaling interval with 
exponent 0.5׽ suggests that there are no clustering effects for scales larger than the integral 
scale of the flow. This is an indication that large scales behave as white noise. Small scales 
with an exponent value less than 1/2 corresponding to the dissipative and inertial range scales 
show tendency of small scales to cluster. For the L-mode, the clustering exponent is 
somewhat larger (-0.335 in comparison with -0.36). The extent of large scales is greater and 
this is due to the large structures of confined plasma turbulence known as blobs or avaloids. 
These structures do not exhibit clustering since they behave as white noise. Note that the 
attribute of scales being large or small should be taken in restricted sense, since Taylor's 
frozen flow hypothesis may not be applicable in the case of confined plasma turbulence. 
Increased confinement, resulting in the H-mode, may at certain times generate ELMs whose 
temporal evolution is presented in Fig. 1 (right). In order to investigate the effect of ELMs on 
clustering we consider the H-mode with ELMs included and with ELMs excluded from the 
signal. In Fig. 6 the standard deviations of the running density fluctuations for the H-mode  
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Figure 6. Standard deviation of the running density fluctuations vs τ for the 5738 H-mode with ELMs 
absent (left) and with ELMs present in the signal. 
 
with ELMs (left) and without (right) are presented. In the absence of ELMs the clustering is 
evident on all scales with an exponent 0.36 and there are no structures without clustering 
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effects. Introduction of ELMs causes intense clustering (small slope, exponent 0.2-׽), which 
involves large scales. In comparison with the L-mode which shows no clustering related to 
large structures as blobs (or avaloids), the large scale structures of H-mode (ELMs) are 
concentrated sets formed by particles clustering and possibly by accumulation of vorticity. 
Present analysis offers some interesting conclusions and opens up new areas for 
understanding plasma turbulence. First, blobs (large scale structures of L-mode) have no 
clustering properties and are very much different from edge localized modes which are 
produced by clustering effects. Even small ELMs have different temporal (and most likely) 
spatial characteristics from blob filaments. Moreover, the overall extent of scales 
corresponding to blobs surpass the scales corresponding to large scale structures of 
incompressible fluid turbulence. In the H-mode clustering effects are present on all scales 
relating this effect to the formation of transport barrier and zonal flows. Since transport is to a 
large extent suppressed in the H-mode, the value of the clustering exponent can be related to 
the transport coefficient [15]. Finally, clustering effects may offer new insight about the 
hierarchy of length scales and their role in the creation of coherent structures 
 
4. Stochastic Catastrophy Theory and the origin of ELMs 
 
The essential feature of Eq. (1.1) is contained in the deterministic term ( )x xΛ  whose form 
determines stable and unstable equilibria. In the same equation the diffusion function is the 
square root of the infinitesimal variance function and determines the relative influence of the 
noise process. We relate this equation to the deterministic CT in which the deterministic 
amplification represents the gradient of potential function V(η ; c1,...,cn ) which incorporates 
control variables c1,...,cn and where η  is the deterministic state variable. In general, CT 
applies to gradient systems that may respond to continuous changes in control variables by 
discontinuous change from one equilibrium state to another. In particular deterministic CT 
considers systems whose behavior follows  
 

 ( )dVd dt
d
ηη
η

= − , (4.1) 

 
so that the state of the system changes as a consequence of the potential change. The 
equilibrium state is determined from the condition dV(η ; c1,...,cn )/dt=0 . Hence, CT 
considers systems that move toward an equilibrium state of minimal energy. The link between 
the potential function of a deterministic system and the stationary probability density function 
(pdf) of the corresponding stochastic system may be established by considering the stochastic 
differential equation [16] 
 

 ( ) ( ) ( )dV xdx dt x dW t
dx

σ= − + , (4.2) 

   
where x is a stochastic variable, dW(t) represents a stochastic Gaussian white noise term 
(Wiener process) and ( )xσ  is the diffusion function. It is now easy to notice that Eq. (1.1) 
and Eq. (4.2) are equivalent with ( )x xΛ  corresponding to –dV(x)/dt. Since the potential 
function V(x) and the stationary probability density function (pdf) F(x) convey the same 
information about the configuration of critical points (i.e. equilibrium points) a stochastic 
stable equilibrium state may be interpreted as the mode of the pdf. Correspondingly, in 
stochastic CT stochastic bifurcations are characterized by a change in the number of 
stochastic equilibrium states or by a change in the number of modes of the stationary pdf. In 
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deterministic CT the configuration of critical points is invariant under diffeomorphic change 
of coordinates while in general this is not the case with the stochastic counterpart. However, it 
was shown in [16] that the product of the pdf F(x) and the diffusion function σ, I(x) = F(x)σ, 
is invariant under diffeomorphic transformation of variables. Moreover, it was shown that I(x) 
is a good indicator of the number of equilibrium states. Furthermore, the results presented in 
[17] have made a connection between F(x) and the level crossing probability mentioned in   
Section 3. Specifically, the probability of crossing a specific level x in the next time step tΔ  
is given by  
 
 ( ) ( ) ( ) 2 / ( )tP x F x x t O tσ πΔ = Δ + Δ  (4.3) 
 
so that the level crossing function ( ) ( ) / 2 /tZ x P x t πΔ= Δ  approximates the invariant 

function  I(x) up to order tΔ . An estimate of the level crossing function is given by 
 

 1
11

1 1( ) ( , )
12 /
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Z x
nt

λ φ φ
π

∧ −
+=

=
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∑  (4.4) 

 
where n is the number of observations and 1( , )x i iλ φ φ +  is equal to 1 or 0 depending whether 
level x was crossed by successive observations iφ  and 1iφ +  or not respectively. 
     
An important implication of the stochastic catastrophy theory (STC) in the context of 
confined plasma turbulence is that the information about level crossings of the time series of 
turbulent plasma density one may obtain a reliable estimate of the number of equilibrium 
states and transitions (bifurcations) between these states. In this manner a transition from L to 
H confinement mode may be easily detected and a type of catastrophy involved may be 
determined. Here we focus on the dynamics of edge localized modes in the H-mode of the 
MAST device and investigate whether ELMs are related to STC, i.e. whether ELMs are 
catastrophic bifurcation events. In Fig. 7 (left) we present the estimate of the level crossing 
function (i.e. I(x)) of the 5738 H-mode signal from which the spikes corresponding to ELMs 
have been removed. 
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Figure 7. Estimated level crossing function of the H-mode signal without ELM spikes (left) and of the 
denoised 5738 L-mode including ELMs (right).  
 
Clearly the obtained level crossing function is dominated by the diffusion function ( )xσ and 
the level crossing function (i.e. the invariant quantity I(x)) is monomodal. The estimated level 
crossing function of the same signal, however denoised this time, is presented on the right 
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hand side of Fig. 7. The obtained function shows multimodal features so that it may be 
inferred that ELMs occur as a result of transitions between different equilibrium states. More 
importantly, these transitions involve one or more control parameters. Such a scenario rules 
out self-organized criticality (SOC) as a possible mechanism for ELM generation which 
assumes that no control parameters are involved.   

 
5. Concluding remarks 
 
Multifractal spectra of plasma turbulent signals based on the Large Deviation formalism 
reveal important features of turbulence cascading mechanism and offer insight into the 
processes determining confinement regimes. Level crossing analysis yields clustering 
properties of turbulence signals and a link with transport properties. Furthermore, this analysis 
plays an important role in detecting bifurcations of catastrophic type with an important 
implication that ELMs occur as a result of such processes.       
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