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Abstract. Numerical computation of turbulent dynamics of edge plasma was carried out. The computation is
based on the solution of nonlinear MHD equations in the frame of reduced two -fluid Braginskii’s
hydrodynamics. It is shown that under transition from OH to ECRH regime, the driving force of turbulence
linked with magnetic curvature increases. The Reynolds turbulent force also increases. The growth of this force
leads to the generation of higher poloidal velocity. Since this velocity is negative and directed as the diamagnetic
drift of ions, then, in accordance with the equation for radial force balance of ions, the value of radial electric
field decreases. Computations qualitatively confirm the experiment al results obtained in T-10 tokamak.

1. Introduction

It is widely recognized that the radial electric field Er plays an important role in plasma
confinement via [E r × Btor] shearing stabilization. Theoretical description of the Er formation,
based on turbulent dynamics and, specifically, the numerical modeling of the edge plasma
electrostatic potential in the T -10 tokamak is the topic of this paper.

Direct measurements by the Heavy Ion Beam Probe (HIBP) diagnostic have shown that
electrostatic potential forms the negative well (Еr = -∂Φ/∂r < 0) in Ohmic and ECRH regimes
with moderate densities (ne = 1.5 - 2.5×1019 m-3) in the T-10 tokamak [1, 2]. Transition from
OH to ECRH regime was accompanied by the decrease of the absolute potential value, i.e. the
module of radial electric field decreased, | Er|ECRH < |Er|OH, while its sign still remains negative.
Main goal of the paper is calculations of the radial profile of electrostatic potential in the
turbulent scrap-off layer (SOL) plasma of the Т-10 tokamak for two abovementioned regimes.

2. Basic equations

We use the set of reduced two -fluid Braginskii equations presented in [3 -7]. Assuming that
the longitudinal ion velocity is zero, u||=0, and ignoring the thermal current, we can obtain the
following set of four-field {, n, pe, pi} nonlinear MHD equations describing the behavior of
the collisional plasma in the slab SOL of tokamak:
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mW   is the exchange term, ei  is the electron–ion collision frequency.

The function NLH contains the nonlinear terms that arise during, when reducing the ion
momentum equation in order to derive an equation for a vortex. As it was shown in [3,7], this
function could be represented as:
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In deriving Eqs. (1)–(6) it was assumed that the magnetic field in the Cartesian coordinates
(x, y, z) has the form:
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Here, B is the equilibrium tokamak magnetic field; q is the safety factor, =r/R0, r and R0 are
the minor and major radii of a tokamak, respectively. In Eqs. (1) –(6), the plasma density is
n(x, y, t), the electron and ion pressures are pe,i(x, y, t); the electrostatic potential (x, y, t)
describes the oscillations of the electric field, and the rest of the notations are as follows:
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It is convenient to present Eqs. (1)–(6) in dimensionless form using the new variables:
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 , x = (r-r0), d =

a-r0 is the width of the computation slab, r0 – is a radius of its inner boundary. The
normalized values for density and electron temperature were taken to be n*= 1019 m–3 and
T*= 350 eV. Also we use dimensionless radial variable 0 < x = (r-r0)/(a-r0)<1.

In terms of these new variables, Eqs. (1) –(6) can be converted to the form [4]:
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0N is the amplitude of the zeroth harmonic of the density.

Note that apart from the electric drift, we take into account the ion diamagnetic drift, as well
as density fluctuation in the equation for the vorticity. It leads to the appearance  additional
nonlinear terms HNL:
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3. Method of solution

For numerical solution of basic set of equations we use a quasi -spectral approach based on the
Galerkin method. All functions f={n, , pe, pi} are chosen as the sum of helical waves with the
same helicity, i.e.
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where =kz/ky=const. For modes with kz=n/R and ky=m/r in a toroidal geometry we have
=/qres, =rres/R. It is well known that this approach reduces the problem of solving 3D
equations to that of solving 2D equations. We switch to the new helical variable zyY 
and assume that the following Fourier series expansion is valid for each of the above
functions f:

  .),(,)cos()sin(),(),,( 0
1

0 resy

L

L
oycLoysL rdkLmmYmkfYmkftxftYxf

MAX

 


(17)

The quantity qres is assumed to be only integer, and the integer mode numbers m = m(L) and n
= n(L) are chosen such that m(L)/n(L) = qres.

Substituting expansion (17) into Eqs. (1) –(6), we obtain a set of equations for the poloidal
harmonics },{ CLSL ff . In symbolic form, this set of 2LMAX equations can be written as:
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In numerical simulations we use the following simple two -level predictor–corrector scheme:
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where DL ˆ,ˆ  and N̂ are the linear, diffusion and nonlinear operators in Eqs. (9) –(14). At each
time step, the difference equations were solved by the matrix sweep method.

The equations for the zeroth harmonics (the background quantities) f0={N0, U0y, Pe0, Pi0} can
easily be obtained by averaging Eqs. (9)–(12) over the angle Y and by supplementing the
right-hand sides of the resulting equations with the source terms SN, Spe, and Spi:
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In Eqs. (19)–(21), the turbulent fluxes are described by the following expressions: the particle
fluxes are ,

YxEVn  the electron and ion heat fluxes are ieVpQ
YEx ,  , the

angle brackets denote averaging over the periodic coordinate Y: 
YL

Y
Y dYYf

L
f

0

)(1 ,

LY=2k0y.

Averaging of vorticity equation (9) finally gives us the following dimensionless equation for
the evolution of poloidal momentum G0y=N0U0y [4]:
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where  E
i

EyEx V
dx
dp

VNVR )( 0  is the turbulent Reynolds stress.

Note that taking into account new nonlinear terms HNL in the vorticity equation (9) results  in
the appearance of additional term < VEx·dpi/dx> in the turbulent Reynolds stress tensor, which
plays an important role in numerical computation.

Equation for the electric field follows from the ion radial force balance:

.,0,
*0

0 BV
сЕV

dx
dp

N
VVUV E

i
pipiyE 

 (23)

0)1(,)()(
1

  
x

dxxEx

Under the assumption that the waves are of the same helicity, we can use the expansi on kz /ky

=/q(xres) at the resonant point to obtain the following representation for f|| in a thin slab
layer:
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Numerical simulations were carried out for the edge region, r0 = 26 cm < r < 30 cm=a, of T-
10 for the following parameters : R = 150 cm, a = 30 cm, d = 4 cm, B = 2.31 T, qres = 3, N0(r0)
= 1.6×1019 m-3, N0(a) = 0.2×1019 m-3, Ti(r0) = 80 eV, Ti(a) = 12 eV. The choice of the resonant
helical modes is obeyed to the rule: m = 3·k, k=1, 2, .., Kmax; Kmax = < 30. The radial extent of
the calculation layer was limited due to the single helicity approach. Increase of electron
temperature Te(r0) on the inner boundary of the calculation layer was used to simulate
transition from OH to ECRH regime with various level of input EC -power.

4. Calculation of radial electric field

Numerical results show the negative electric potential in the OH regime, Te(r0)OH = 60 eV.
The gradual increase of the boundary electron temperature Te(r0)ECRH = 90, 120, 150 eV leads
to corresponding decrease of the absolute value of the electric potential, as shown in Fig. 1.
Poloidal velocity U0y is shown in Fig. 2. The value of electric potential and mean Er shows
qualitative agreement with experimental data obtai ned both in Ohmic and ECR heating
regimes [8-10]. Dependence of Er averaged over the calculation layer on the boundary
electron temperature Te(r0) is shown in Fig. 3. The transition from low Te(r0) (OH) to higher
Te(r0) (ECRH) results in decrease of the ab solute value of electric field |Er|ECRH < |Er|OH,
remaining its negative sign.

Numerical calculations shows , that with growth of electron temperature under transition from
OH to ECRH regime there is an increase of amplitudes of fluctuations of potential because of
increase of the driving force of turbulence linked with magnetic curvature (a member
~gB∂(pi+pe)/∂y in the equation (9)). Thus Reynolds's turbulent force increases (see a Fig. 4).
The growth of this force leads to the additional generation of poloidal velocity. Since this
velocity is negative U0y < 0 and directed as the diamagnetic drift of ions Vpi < 0, then, in
accordance with the equation for radial force balance of ions  (23), the value of radial electric
field decreases with growth |Uoy|, see Fig. 3. Thus, the computation results qualitatively agree
with experimental data.
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Dependence of mean electric field on the plasma
density was also modelled for the same plasma
parameters. The plasma density at the inner
boundary was chosen to be the only varied
parameter for numerical simulations. Calculations
were performed for the realistic values of N0(r0) =1.2
- 2.1×1019 m-3. Figure 5 shows the inverse
dependence of modeled electric field on the plasma
density, which agrees with t he tendency, observed
experimentally in T-10 [2].

5. Conclusions

The model for the Er calculation based on the Braginskii’s hydrodynamics was developed for
the periphery of the tokamak plasma. Numerical results for T -10 conditions show qualitative
agreement with direct experimental data, obtained by HIBP. Moreover, the experimental
dependences of Er on plasma temperature and density were obtained by modeling. So, Er in
the strong turbulent plasma of the tokamak periphery was satisfactory described by d eveloped
model.
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