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Abstract

The vorticity field in tokamak evolves to self organization and is concentrated in a

narrow layer at the edge. The particle density and the current density have local maxima

on the same layer, leading to destabilization of the rotation, breaking up of the layer and

filamentation. We propose this as a basic model for the Edge Localized Modes.

Large scale vorticity is injected in tokamak plasma via external heating (NBI, ICRH) and

evolves to an equilibrium profile via the balance of torque. The drive-dissipation is not the

unique factor in the dynamics since the vorticity cannot have an arbitrary equilibrium profile in a

2D plasma. It has natural profiles corresponding to the spatial distributions of the streamfunction

ψ of the poloidal velocity which are extrema of a particular action functional [1]. The extrema

of that action functional are governed by a differential equation

Δψ +
1
2

sinhψ (coshψ −1) = 0 (1)

Solving this equation one identifies natural profiles of the vorticity which in the phase space

represent attractors. Essentially the vorticity separates into two regions with opposite signs: in

the center it is collected the vorticity of one sign and at the perifery it is expelled the vorticity of

the opposite sign. This is a particular form of dipolar structure, of the same nature as, for exam-

ple, the Larichev-Reznik modon, but in cylindrical geometry it has superior stability compared

to the situation where the regions of opposite vorticity are side-by-side, and it is compatible

with global rotation.

The states consisting of this radial separation are actually not stationary, they continue to

evlove on a slow time scale toward the strict localisation of the vorticity of the appropriate

sign in a region close to the edge, leading to a narrowing of the layer of poloidal rotation. An
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indication of the direction of evolution is given by the following density of "energy" (ν2 = Ωci,

ν2/κ = ρ−1
s )

E = v2
(

v2

κ

)2
1
4

[
11
8

(sinhψ)2 (−2+ coshψ)+
3
8

coshψ
]

(2)

According to the Ertel’s theorem the particle density n(r, t) will tend to create a local maximum

superimposed on the maximum of the vorticity ω (r, t). We argue that a similar process leads to

concentration of the current density j (r, t) in the form of a layer of local maximum, (a current

sheet) coinciding with the layer of the extremum of the peripheric vorticity. The position of

the current density extremum evolves such as to coincide with the vorticity extremum since it

removes terms of the "baroclinic" (but MHD-) type in the dynamics. The fact that the current

density evolves such as its extrema coincide with the extrema of vorticity have been seen in both

relaxed or transient MHD states and has been found experimentally in DIII-D [7]. The states

described above, essentially based on vorticity radial distribution derived from Eq.(1) have rel-

evance for the H mode. Several experimental studies of the H mode in tokamak have shown the

presence of a narrow layer of sheared poloidal rotation which acts as a barrier to the transport

of energy. With the continuous (slow time scale) concentration of vorticity into the narrow layer

near the last closed magnetic surface, and the induced increase of particle density and current

density in the same layer, this state becomes fragile to perturbations that have not been included

in the action functional. Two perturbations are known to appear : vorticity concentration into

filaments; and tearing of the current sheet with formation of local concentrations of current lim-

ited by a separatrix with two Y-type singular points. These two processes are acting together

and synergetically.

Figure 1: Profile of poloidal rotation resulting from Eq.(1).

The Edge Localised Modes (ELM) appear as a fast, very strong, perturbation of this layer

eventually leading to the suppression of the sheared rotation and its replacement by a periodic
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chain of filaments. The evolution which starts from the strongly sheared rotation layer and leads

to a set of filaments with high concentration of vorticity, particle density and current density has

its origin in the vortex nucleation.

At the origin of the vortex nucleation is the fact that, for a fluid in rotation, it is energetically

more favorable to generate localised vortical structures immersed in the flow than to main-

tain the uniform structure of the flow field. This has been shown for rotating Navier-Stokes

fluids, protoplanetary disks, planetary atmosphere; the standard examples are the rotating Bose-

Einstein condensates and the superfluids. In a 3D study of the atmospheric mesocyclone [2] it

has been identified a very rapid concentration of the vorticity, in which the narrow circular band

of vorticity is replaced with a set of strongly concentrated filaments disposed periodically on

the circle, a process in which the two-dimensional aspect is dominant (the concentration takes

place due to negative convergence of vorticity toward the final very localized structures). The

example of superfluids deserves some discussion [4]. The velocity of a superfluid is potential

vs= ∇χ (i.e. irrotational) as long as there are no vortices present in the fluid. When vortices nu-

cleate, they appear as line deffects, stable string-like structures with a central hard core and with

the order parameter (complex function whose phase is χ) vanishing in the center of the core.

A vortex is a line singularity in the coherent order-parameter field. For superfluids the phase of

the order parameter varies with 2πn when turning around the core. The circulation around the

core is quantized
∫

dl ·vs = κn. This means that the azimuthal velocity is vsθ = κn/2πr. The

energy per unit length (the line tension of the vortex string) is

εV =
ρ0κ2

4π
n2 ln

(
rV

rc

)
rV
rc

is the ratio is of the distance between two vortices and the radius of the core. The condition

of creation of a vortex ring with radius R and core radius a has been formulated by Feynman :

the velocity of the superfluid component must be greater than the velocity self-induced by the

ring Vs f > V ring = C
R ln

(8R
a −1

)
and the self-energy of the flow in a vortex ring is

Ering =
C

′

R

[
ln

(
8R
a

)
−3

]

Since it is a threshold for nucleation, this energy is taken by Langer Fischer at the exponent of

a barrier-type expression for the probability of nucleation

Γ = Γ0 exp

(
−Ering

kT

)

A rotating superfluid should be seen as a metastable state of a supersaturated vapor. There

is a finite probability of nucleation of the stable phase. The generation of a vortex is similar to
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the condensation of a droplet of a liquid phase from a gas at the critical state and the energy

is lowered. It is proved by numerical simulations and by mathematical analysis of the bounds

for the minimisers that a superconducting fluid rotated in a two dimensional geometry evolves

through a series of transitions consisting of nucleation of vortices. The uniform state, rotating

but without vortices is stable up to a certain angular velocity. Then a vortex nucleates in the

fluid. For even higher velocities another vortex is nucleated and so on. This process manifests

hysteresis due to the interplay between the branch with vortices and the branch with uniform

fluid. Summarizing, for superfluids the nucleated vortices are topological and the equation is the

Nonlinear Schrodinger Equation. It is actually the same as what results from the field-theoretical

model of point-like vortices for the Euler equation [3]. We will use this below.

The physical process of generation of filaments inside the sheared velocity layer, followed

by their growth until the suppression of the poloidal flow cannot be attributed to a spontaneous

nucleation as in superfluids, i.e. the superfluid paradigma of vortex nucleation cannot be directly

applied to the ELM problem. However there is a physical process of generation of localised

structures of vorticity due to a transient Kelvin-Helmholtz (KH) event. In such an event a piece

of fluid from the region of high vorticity is transported inside the flow and deformed into a

double spiral. We can now invoke the field-theoretical model of the ion-hydrodynamics, build

on the discrete model of point-like vortices interacting in plane by the short range potential,

K0 (r/ρs) [5]. This leads to Eq.(1) but this model is non-Abelian and has trivial topology. It has

been noted, however, that this model descends to an Abelian dominated dynamics [6], where

the equation of the stationary states (instead of Eq.(1)) is

Δψ − exp(ψ) [exp(ψ)−1] = 0 (3)

Notably, this model restores the topological constraint (the energy is bounded from below by a

topological flux Φ),

E ≥ v2Φ (4)

and has ring-type vortical solutions. We can consider that such a state saturates and stabilizes

the double-spiral distribution of vorticity emerging from the KH event.

Depending on the dimensions, the element of vorticity that is absorbed into the shear layer

can have different evolutions. If the double spiral blob is small it takes a long time before being

dissipated by the parallel electron dynamics and it is easily advected via the Magnus force mod-

ified by the effect of pressure variation, inside the layer. The vortex nucleation converts a part of

the angular momentum in the volume of the layer into a discrete set of blobs of vorticity which
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later are disipated. This provides implicitely an additional mechanism of transport of angular

momentum leading to saturation of the velocity in the sheared layer. When the amplitude of the

double spiral from the transient KH event is high enough, the threshold given by the topological

bound Eq.(4) is overcomed and the double spiral transforms into a ring vortex whose stability

is protected by the topological bound.

In the local coordinate system attached to the double spiral, the evolution consists of a con-

tractive motion of the tip of the spiral, toward the center of the spiral

ρ
B2

(
∂
∂ t

+ vr
∂
∂ r

)
∇2φ = ∇‖ j‖

This is actually a pinch of the full structure and consists of the stretching of the initial plasma

element along the path of the spiral with simultaneous advancement of the rotating spiral body

toward the center (diffusion takes place simultaneously). The radial compression vr is deter-

mined from the spiral field

ψ = A(r)exp{i [ϕ (r)−ωt −mθ ]}

The wavenumber of the spiral is k = dϕ
dr and the winding number of the spiral is given by

the angle between the tangent to the spiral and the circle centered at the center of the spiral

tan(θ) = m
rϕ ′(r) = m

kr . This is a trailing spiral, that come from exterior and arrive in the center
dθ
dr < 0 , k < 0, with vr < 0. The parallel current is pushed to the parallel direction by the local

pinch of the vorticity associated with the evolution of the double spiral in a KH event. Being a

transient event and at low collisionality, the only damping of the current in the parallel direction

comes from the poloidal magnetic pumping, but this is reduced because the squeezing factor

is high, due to the strong radial electric field in the sheared velocity layer. The current in the

parallel direction being enhanced from the vorticity pinch (in the double spiral) it will provoke

a local magnetic structure that will produce a swirl, and this swirl enhances the stabilization of

the vorticity filamentation process.

This dynamics can explain the formation and stabilization of the vortical structures inside the

layer of poloidal rotation but we still need to explain the break up of the layer. Two processes

can be invoked, both leading to dynamics which is typical for the Chaplygin gas with strange

polytropic or negative temperature. They have been discussed by Trubnikov and by Bulanov

and Sasorov.

The concentration of the vorticity in the rotation layer induce a concentration of current den-

sity in the same layer, i.e. a current sheet (see Fig.9 of Burrell et. al [7]). The current sheet is

unstable to the tearing instability and it can be torn apart into strips of current. The geometry
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adopted by Trubnikov [8] is adequate for studying the tearing of the particle density distribution

in the layer. The width is initially L0 and it evolves to a profile L which is variable along the

direction y of the layer (poloidal). The coordinate x is perpendicular on the layer in the equilib-

rium position (radial). The magnetic field has a shear B = By (x) = −B0 tanh(x/L) (this should

be the Harris profile) and the z component of the magnetic potential A ≡ Az gives By = ∂A/∂x

with A = −LB0 lncosh(x/L) in the unperturbed state. The magnetic field has the magnitude B0

at the upper and lower limits of the layer (with opposite directions).

The process consists of the deformation of the profile of the leyer L0 → L(t,y). In the layer

there is the current and on every unit length of the layer along x the total current is i0z .

The first assumption is that in the long wave limit the magnetic field at the surfaces of the

deformed layer does not differ too much of B0. Then the total current per unit of y-length

is always the same iz = L(t,y) jz = i0z = cB0/(2π). The current density is jz = en(viz − vez)

(e = |e|, ne = ni = n). Then

viz − vez =
cB0

2πenL(t,y)
(5)

We note that the product nL is actually the density of the plasma and the equation of continuity

is ∂
∂ t (nL)+ ∂

∂y (vnL) = 0 where v is the velocity of plasma along the direction of the layer, y.

One can introduce a normalized density of plasma ρ (t,y) = nL(t,y)/(n0L0) and the previous

equation becomes the usual density conservation

∂ρ
∂ t

+
∂
∂y

(ρv) = 0 (6)

The equation of motion is

∂v
∂ t

+ v
∂v
∂y

=
1

nmic
(− jzBx) =

e
mic

(viz − vez)
∂A
∂y

(7)

The system is invariant along the z direction which means that the generalized momenta of

the electrons and of ions are conserved miviz + e
cA =const , mevez − e

cA =const′, leading to

∂A
∂y

= − cmime

e(me +mi)
∂
∂y

(viz − vez) (8)

The difference of the two velocities is obtained from the continuity equation, expressed in terms

of the quantity nL, viz − vez = cB0
2π

1
nL = cB0

2πn0L0

1
ρ and the equation of motion becomes

∂v
∂ t

+ v
∂v
∂y

= c2
0

1
ρ3

∂ρ
∂y

(9)

The constant is c2
0 = cme

(me+mi)

(
cB0

2πn0L0

)2
= 2vAδ0

L0
. This is a Chaplygin gas and is subject to the

so-called "drop-on-ceil" instability, known that transforms a uniform layer of density into a
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discrete set of patches with high concentration of the density separated by regions with almost

vanishing magnitude of the density.

The equations (6) and (9) are solved by Trubnikov using a hodograph transformation. The

formulas are
nL

n0L0
= ρ (t,y) =

sinh(|τ|)
cosh(τ)− cos χ

,
v
c0

= − sinχ
sinh(|τ|)

where τ = t/t∗ < 0 , χ = y/c0t∗. The time-like variable τ is introduced such that the unperturbed

state is located at t →−∞ and the complete tearing of the layer is done when δ χ = π , at τ = 0.

Trubnikov obtains a solution that exhibits modulation of the particle density of the layer in the

form of periodic, very narrow, quasi-singular maxima, between which the density is extremely

small. The quickest growing solution is the periodic one

± y
c0t∗

= χ (τ,ρ) = z+ arctan

(
z

r−1

)

z =

√
exp(−τ/2)−

(
1
ρ
−1

)2

The density varies between the limits

1
1+ exp(−|τ|) = ρmin < ρ <

1
1− exp(−|τ|)

The solution describes periodic hills whose maxima become infinite at τ →−0.

The break up of a strong current shear (vez/veT h � 1) and the concentration of the current

density in periodic filamentary structures has been studied by Bulanov and Sasorov [9]. When

a tearing takes place and a strip of width 2a on the y (poloidal) direction is formed, the motion

of the edge of the tear a(t) has a uniform acceleration in time,

a(t) =
1

12

B2
0

μ0nsmiL
t2

This velocity is higher than the sound speed and shows that the tearing progresses very fastly,

leading to the vanishing of the current density j (r, t) on large poloidal intervals and concentra-

tion to quasi-singular value of j (r, t) at certain filaments which are disposed periodically.

This dynamics is particularly interesting since it starts from a perturbation of j (r, t) which

can be produced by the stabilized vorticity filamentation discussed above. The two process

mentioned above are strictly nonlinear, i.e. they cannot be identified perturbatively.

In conclusion, we summarize the connections that have been identified. The natural distrib-

ution of the vorticity in the meridional plasma section has a dipolar character but with circular

symmetry, which means a ring of vorticity at the plasma edge. This state is not the absolute

extremum of the action functional, therefore it still evolves and the concentration of vorticity
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is enhanced. Ertel’s theorem and variational constraints impose that the particle density and the

current density follow the vorticity such that they accumulate and create local maxima super-

posed on the layer where the vorticity is concentrated. Isolated KH events generate double spiral

vortex structures which can be stabilized in the form of a ring-type (tubular) vortex if a thresh-

old is exceeded such as the topological constraint applies. The spiral stretching of the vorticity

induces a transient current density increase which is also favorable to the swirl stabilization

of the vorticity filament. The current perturbation initiates a nonlinear tearing of the current

sheet, leading to filamentation of the current density. These connections presents the possibility

to generate filaments that are local maxima of the three parameters: vorticity, particle density

and current density. The filamentation process is fast and is a possible explanation of the large

ELMs.
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