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Abstract. Geodesic Acoustic Modes (GAM) are shown to constitute ainaotis spectrum due to radial inho-
mogeneities. The existence of a singular layer causes GAMade convert to short-wavelength kinetic GAM
(KGAM) via finite ion Larmor radii; analogous to kinetic Alen waves (KAW). KGAM are shown to propagate
radially outward; consistent with experimental obsexadi and numerical simulation results. The degeneracy
of GAM/KGAM with Beta induced Alfvén Eigenmodes (BAE) is a@nstrated and discussed. We show that
energetic particle driven oscillations can be excited ftaemGAM continuum, similarly to the Energetic Particle
Mode (EPM) case. Furthermore, it is shown that KGAM can bédinearly excited by drift-wave (DW) turbu-
lence via 3-wave parametric interactions, and the reduttaven-dissipative nonlinear system exhibits typical
prey-predator self-regulatory dynamics. KGAM are prefeigdly excited with respect to GAM because of the
radial wave-number dependence of the parametric exaitptiocess. Plasma non-uniformity effects on nonlinear
KGAM excitations are discussed.

In this work, we show that Geodesic Acoustic Modes (GAM) [@pstitute a continuous spec-
trum due to radial inhomogeneities. The existence of a smdayer, thus, suggests GAM
collisionless damping due to absorption at the GAM contmuasonance [2] and linear mode
conversion to short-wavelength kinetic GAM (KGAM) via fiaiton Larmor radii (FLR) and
finite magnetic drift orbit widths (FOW) [3]. This result issthonstrated by derivations of
the GAM/KGAM mode structure and dispersion relation in thregslar layer, indicating that,
typically, KGAM propagate radially outward [3]. The formalentity of the GAM/KGAM
wave equation to that describing shear Alfvén wave (SAWJlenconversion to kinetic Alfvén
Wave (KAW) near the SAW resonance [4], suggests a compleatogy of GAM/KGAM
< SAW/KAW. Our analyses also confirm that GAM and Beta inducéf¥é&a Eigenmodes
(BAE) [5, 6] are degenerate in the long wavelength limit, vehdiamagnetic effects are ig-
nored, even when FLR and FOW corrections are accounted &sidBs the importance of its
physics implications, the usefulness of this result on tAE# &AM degeneracy is that we may
straightforwardly derive the governing equations for GABng the kinetic theory results on
BAE developed earlier [7, 8, 9].

We show that dynamics of GAM/KGAM excitations should be addied as initial value prob-
lem in the presence of a radial nonuniform source. Detailhe$e analyses are reported in
a separate work. Since GAM/KGAM are toroidally and (neagg)oidally symmetric struc-
tures, the source term can be associated with either antepgodistribution of (fast) par-
ticles in velocity space [10, 11] or by nonlinear excitasotue to drift-wave (DW) turbu-
lence [3, 12, 13, 14]. In this work, we show that, while GAM/K® are linearly stable due
to ion Landau damping, they can be excited from the GAM caniin by energetic particles
(Section 2), in analogy to Energetic Particle Modes (EPM),[And by DW turbulence via
3-wave resonant parametric interactions (Section 3) [3AMGare important to turbulence
transport studies, since their low frequency radial stmes can scatter DW fluctuations to sta-
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ble short-wavelength domain and, thereby, suppress theuldlence transport [12, 13]. In
addition, the BAE/GAM degeneracy and the possibility ofigrg structures with different
characteristic scales at the same frequency by a varietyr@rdic interactions have a peculiar
important role in influencing cross-scale couplings of mesal micro-scales and thereby long
time-scale behaviors in burning plasmas [16, 17].

1. GAM radial structures, GAM continuous spectrum and BAE/GAM degener acy.
The BAE/GAM degeneracy can be easily demonstrated consgitdre magnetic flux surface

averaged quasineutrality condition for axisymmetric fhattons (toroidal mode number =
0), which reads

J10, (JIVr26.0,) ~ 0, (67,) =0 (1)

whered J, is the fluctuating radial current ar{d.) denotes magnetic flux surface averaging.
Here, we have considered radially localized fluctuationa igeneral axisymmetric toroidal
equilibrium with straight field line flux coordinatés, 6, £) and Jacobiad —! = Vr x V- VE.
Meanwhile, the equilibrium magnetic field is given by thelideh representatiold = V(£ —
q0) x Vb, with ¢(¢,) = B-VE¢/B- V0 = diy/di, andy(1),) the toroidal (poloidal) magnetic
flux function. Equation (1) describes GAM as well as fluteeliBAW, like BAE, near the
qRok) = ng —m = 0 surface,m being the poloidal mode number aft} the torus major
radius. Atk = 0 and forw, /w — 0, with w, the diamagnetic frequency, the GAM and BAE
dynamics must be identical since, for both fluctuations dyr@amic behavior is dominated by
the particle response to the radial electric field, whictefl the particle radial magnetic drifts
associated with geodesic curvature [3].

DefiningQ = (w/wy), with wy; = v,/ (qRy) the ion transit frequency ang; = (27;/m;)"/?,
and using Egs. (12) and (14) of [7], we readily cast Eq. (1)vabo the following form:

8, (NoA2(2)0,6¢) =0 )
AS(Q) =1+ (¢/Q) (F(Q) - N*(Q)/D(®)) . ®3)

Here, Ny = Ny(r) is the plasma density, which we assumed the same for elscamah unit
charge ionsA? is theA? function introduced in [7, 18] evaluatedaat/w = 0 and renormalized

by a factorv? /(q¢Row)?, with v4 the Alfvéen speed. Meanwhild](Q2) = Q(Q? +3/2) + (Q*

02 + 1/2) (Q),N(Q) = Q +(1/24+9)Z(Q), D) =Z(Q) + (1 +1/7)(1/Q), 7 =T./T;
andZ(Q) =712 [~ ¢ —v* /(y — Q)dy is the plasma dispersion function. Equation (3), based
on the results of [7] and on the proof that BAE and GAM specteadegenerate fav, /w —
0[16, 17, 19], is valid in thé:,p;q < 1 limit (%, is the radial wave vector ang = v; /w,; the

ion Larmor radius, withv.; = (eB)/(m;c)) and coincides with the corresponding expressions
given by Sugama et al. [20] and by Gao et al. [21] in ?¢T; = 0 limit. From Eq. (3),

it is readily verified that\, depends orf.(r), 7;(r) andq(r), which are all functions of the
radial position. Equation (2) is similar to that describithg SAW resonance [2] and, thus,
demonstrates that GAM constitutes a continuous spectristried byA2 = 0, giving the
solutionw = wgan(r). Note that the crucial feature of continuous spectra is hat of

a space-dependent frequency: in particular, fluctuatiériceo(GAM) continuous spectrum
consist of singular structures, whose time asymptotic Wiehas quasi-exponential [22, 23]

x (1/t) exp(—iwgapm(r)t) due to collisionless absorption [24]. The singular natur¢he
fluctuations is embedded in the corresponding value. oivhich increases in time as [25]

/{ZT ~ —(deAJ\/[(’F)/dT)t . (4)
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Equation (4) can be viewed as a physical manifestation of@Imaixing [24] of fluctuations
belonging to the GAM continuous spectrum and, as such, it mservable phenomenon: see
e.g. Fig. 4 of Ref. [26] for a visualization of this effect fmonumerical simulations. Experi-
mentally, when the system is globally perturbed with a bro@cd frequency spectrum at some
initial time, phase mixing as described by Eq. (4) should iséble as radial spreading of the
fluctuations belonging to the continuous spectrum with att@ristic speed scaling as the phase
velocity [27]. Whenk,.p;q ~ 1 additional phenomena start becoming important as disdusse
below. The existence of continuous spectra should not beréghfor a correct description
of the relevant dynamics. In fact, even when the continupestsum is analyzed in kinetic
theory, when FLR/FOW effects may be invoked and discretizecontinuum description, it is
the intrinsic time scale of the process that matters andmates the system behavior, e.g. the
inverse mode growth rate{"'). This behavior has been demonstrated for EPM, which can be
excited from the SAW continuum discretized as a collectibKinetic Toroidal Alfvén Eigen-
modes (KTAE): above the EPM excitation threshold, the cating effect of weakly driven
KTAE on the EPM corresponds exactly to the continuum dampkuyession [28], since the
discrete KTAE are indistinguishable on=a ;' time scale. In Section 2, we demonstrate
that this same qualitative behavior is expected with the Gakitinuum, from which energetic
particles can excite a discrete mode when the drive excesdsmaum damping.

In the long wavelength limit, the GAM/KGAM dielectric furion ¢, is readily derived using
BAE/GAM degeneracy and is given in the form [3]

eg =0 [AF =0 (3/4+ (¢*/)S(Q)] (5)

whereb = k2p? /2, So(Q) is the functionS (), defined in Eq. (B28) of [8] and Eq. (21) of [9],
evaluated ab, /w = 0, i.e.

So(€?) i {L(Q) —2L (9) _ Q) (H(Q) —2H (Q)) L NE@F

T 22 2 D(Q) 2 D(Q)?
x (F _9F (%))} LT(Q) - %g)vm) + %Z(Q) + W;/Q)
(8) - 38 (+(8) )] -

with L(Q) = Q7 + (5/2)Q° + (19/4)Q23 + (63/8)2 + (Q® + 2Q° + 301 + 30% + 3/2) Z(Q2),
H(Q) = Q% + 203 + 30 + (2% + (3/2)Q* + (3/2)Q? + 3/4) Z(Q2), T(Q) = Q3 + (5/2)Q +
Q1+ 202 + (3/2)) Z(Q2) andV () = Q+ (22 + 1) Z(2). In the fluid limit, |Q] = |w/wy| >
1, one readily derives from Eq. (5) [3] the expression givej28] and confirms that FLR/FOW
effects strengthen GAM collisionless dissipation [20].

Since nonlinear excitation favors short KGAM radial wavejths (see Section 3), we need to
relax thek, p;q < 1 assumption in Egs. (3) to (5) and derive corresponding eswas that are
valid at short wavelength. It can be shown that a very comgegutession foe, can be derived
forfor 1/¢* < k.p; < 1[30], i.e.,e, = Ree, + ilme, with

7 q> ¢ (31 9 N ¢ (23 72
Ree, = b41— (- opd (247 S e T
s { <4+T>92+b§22 6 1T )T TS

4
¢ (74T 481 35, 1.,
Cpd (LT e o 7
94(32+327+8T+2T ’ 0
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Vg 2bg?
Ime, = ﬂﬁ‘:—‘ exp {—|Q]/(V2bg)} |1+ |T|q T 9—2(1 +57/4 4+ 72)
1 (2 Vo
94— _
* 24 <4b2q4 b2q3 ®)

With this expression for,, the GAM/KGAM collisionless damping rates are in excellagtee-
ment with recent TEMPEST numerical simulations [30, 31].

With the formal substitutiol\? — b~'¢,, with ¢, provided by either Eq. (5) or (7) and (8),
the structure of Eq. (2) is identical to that describing SAWd®a conversion to KAW near the
SAW resonance [4]. Thus, GAM mode conversion to short wangtle KGAM is expected
near the singular laye’\¢ = 0), with the well-known Airy function behavior for the homo-
geneous solution of the modified Eq. (2) [4]. Equations (5J@rand (8) also confirm that
GAM/KGAM propagate outwards, except for sufficiently I&ly/T; atq < 2.6 [3]. The Airy
function behavior for the homogeneous solution of Eq. (2)dified by FLR/FOW [4] as pre-
scribed by Egs. (5) or (7) and (8), does not allow solving fie GAM/KGAM frequency,
which remains undetermined until the non-homogeneoudgmols solved in the presence of
a source term [4]. Global sources that excite the systemankitoad band frequency spectrum
at some initial time tend to excite the GAM continuum, whilenare localized source with a
narrow frequency spectrum tends to excite KGAM. The timeetehce of the source is there-
fore an important factor as well, since it introduces sonaatteristic time and corresponding
frequency in GAM/KGAM excitations. The initial value prarh of GAM/KGAM excitation

in the presence of a radial nonuniform source will be adée§s a separate work. Here, we
discuss GAM excitation by energetic particles (Sectionrt) by DW turbulence via 3-wave
resonant parametric interactions (Section 3).

2. GAM excitation by energetic particles and connection with EPM.

As in the case of the SAW continuum, from which EPM are excitd@n wave-particle res-
onant drive exceeds continuum damping, energetic pastada excite modes from the GAM
continuum. Energetic particles are readily included info @), since it coincides with the flux
surface averaged vorticity equation. This, in turn, canaben in the reduced form of Eq. (13)
of Ref. [32], which is appropriate for investigating fashiexcitations of low frequency waves.
Combining the flux surface averaged Eq. (13) of Ref. [32] W&th (2) of Ref. [3], one has

10 ()2 0 .- dreg
_;E (fQ—RgrAS(Q)Eégb) = < 02 Jo(klpE)wwdEéKE> . (9)
Here, we have separated the flux surface averaged respotheesecalar potential fluctuation,
§¢ = d¢ + d¢ and B; = 8w N,T;/BZ. SubscriptsE indicate fast ion quantities, character-
ized by electric chargeg, massmpg, Larmor radiuspr = mgcv, /(egBy) and equilibrium
distribution functionFyz. The Bessel functiony(k, pr) accounts for energetic ions FLR,
k, is the perpendicular wave vectas,z is the energetic particle magnetic drift frequency,
wap = mpc/(egBy)(k x b) - k(v? /2 +vﬁ), xk = b- Vb is the magnetic curvature,= By/ By
and the non-adiabatic fast ion response is given by

[0 V) —i(w—wy)], 0Kp =i (%)E QLoeJo(kipE) [<5¢ - 515) + <%>E5QL] . (10)

By QGfinition, we haV@FOE = Qw&)zF0E+mEc/(eEBO)(k><b)-VFOE and(S/I” = — (C/UJ) b-
V1, having considered that the flux surface averaged paratby potential is negligible for
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GAM. In deriving Eq. (9), terms containingy are negligible in the flux surface averaging. The
term on the r.h.s. describes the GAM excitation by energediticles via geodesic curvature
coupling, which require$;z velocity space anisotropy since GAM are nedrtym) = (0, 0)
toroidally and poloidally symmetric modes, while we droglee fast ion residual contribution
to the polarization current as it is typically negligible?]3

When Eq. (9) is solved as a boundary value problem, global G&lttures can be found [33],
that are destabilized by the fast ions [34]. Furthermorghensmall fast ion orbit limit, the
r.h.s. of Eq. (9) has the formd, (5;/(¢*R3)AQ%0,0¢); thus, the local GAM continuum fre-
quency [3] is shifted according f&* = Q% ,,,+AQ% [35]. This result follows the same idea of
[36] for evaluating the effect of energetic ions on the acolation point of the TAE frequency
gap. Generally, however, energetic ion orbits are not saral give negligible contribution
in the inertial layer region. Equation (9) is structuralhetsame as Eq. (23) of [37], where it
was shown that bound states can be obtained with localizergetic ion radial profiles, which
drive the mode where the source term is strongest. For eneiges localized at,, we assume
r.h.s. oc exp(—(r —rg)?/L%) ~ 1 — (r —ro)?/L% [37], with Ly the characteristic scale of the
energetic ion radial profile. Summarizing the results of [Bxtalized solutions (bound states),
which are affected by an exponentially small continuum daypexist if |Lo| > Lg with
Lz = 0,,In A2(Q2; 1), where(), is the mode frequency and we have explicitly maintained
the dependence aof, on r. More detailed discussions of this case and of the analogly [3
with EPM [15] will be given in a separate work. Here, we wantdous on the opposite limit,
|Le| < Lg, when coupling of the mode with the GAM continuum becomesradeo unity.
Since the mode structuredsdg ~ C/ (roA2(Q2;70)) /(1 + (r — r9)/L¢) in the inertial layer
atr ~ ry, one can readily construct the following dispersion relaijvariational principle)

i 3;Q2%sgn ()
700, A (2225 70)

= SWe() = ) BICI? [ rdrds RES[Be. 9] . (00)

where the l.h.s. represents GAM continuum damping @ig; plays the role of potential
energy due to fast ion contributions in the ideal regionsudfign (11) is the exact counterpart
of the EPM dispersion relation [15]. In fact, near margirtabdity,

(P, Red W) ( sgn(Qo)Imé Wy — ™3k (12)
|wol ’ 700, AG (5 m0)[ )

expressing the mode excitation when the mode drive by fasteaceeds continuum damping.
Meanwhile, the real mode frequency is givenlao Wz () ~ 0, i.e. it is determined by fast
ions nonresonant response. For consistency, we must aledhal < Lg, i.e. A3(2% 1)
must be sufficiently small, otherwise théc| 2 Lg limit applies. In this way, the mode
frequency driven by the localized energetic ion source tdomdifferent from the local GAM
continuum frequency [3].

3. GAM/KGAM nonlinear excitation by drift-wave turbulence.
Here, we follow the approach of Ref. [38] and assume that appwave in DW turbulence

spectrum (e.g. an ITG mode) is characterized by frequeg@and wave-vectok,, while the
corresponding scalar potential in toroidal geometry is

S = Age 08 Z emi=iwot g (ngg —m) + c.c. | (13)
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where A, is the mode amplitude ang,(noq — m) provides the radial structure of the single
poloidal harmonicsn for fixed toroidal mode number,. It has been recently demonstrated [3]
that the pump DW can spontaneously decay into a zonal mod&KGgiven by d¢, =
A,ether=iwct 1 ¢ c. and characterized by, k¢ ), and a lower-sideband DW (ITG)

5¢_ _ A_einof—l—ikgr—iwft Z 6—im9¢8(n0q o m) +ce. | (14)

with w_ = w, — w§ andk, + k- = k. = tk.. Following Ref. [38] and averaging on the fast
radial variationsx |¢o(noqg — m)|?, associated with the local structures of the DW poloidal
harmonics, the zonal mode evolution equation in the loaihtdimit becomes [3]

ey Ac = —(c/2B)ckghch?p? <<|¢§0|2>>A0A_ , (15)

where [38la; = I P10/ (eNodgo)+1, 0P 4 is the perpendicular ion pressure fluctuation due to
the pump DW (ITG) ana(<\¢o|2>> =D m fm+11/22 |bo(nog — m)|2d(noq) = [72 |do(n)|?dn,

with ¢o(n) = (2m) =2 [T expli(nog — m)n]o(nog — m)d(nog — m). Given the pump DW
(ITG) and the zonal mode (KGAM) and denoting with_ the sideband dispersion function,
the lower-sideband DW (ITG) obeys the same evolution eqoatiscussed in Ref. [38], i.e.

D_A = (i/wo) ¢/ Bkahc (T, T.) AcA; (16)

_ =~ (0Dg,/Owp) (A — we —ivq) - a7)

Here, Dy, is the Hermitian part of the DW (ITG) dispersion functiof is the sideband
damping, A = (kZ/2)(0Do,/0wo) " (0 Do, /0kj,.) = wo — w1 andw, is the solution of
Do, (w1, ko £ ke) = 0[38]. From Egs. (15) and (17), the frequency resonance tiondi
for the resonant decay gives

We = Wer + ¢
ng — A 9 (18)

where the real KGAM zonal mode frequeney,, is such that,, (w,.) = 0. Given Eq. (18), we
readily have, ~ (i/wg, )k p7 (7c+7,), With v, the KGAM damping, and_ ~ —i(9Dy, /duwy)
X (¢ + va) from Eq. (17). In this way, Egs. (15) and (16) become, resypelyt

(% +79) Ac = =(c/2B)askoke { {|Bo*) ) ApA_, (19)
(¢ +7a) A= = —(¢/woB) (Do, [0wo) ™ (T3/T. ok Ac Ay (20)

Denotingc? = T,/m;, p* = ¢%/w? and

Yhp = 0i(Ti/T.)/ (2u0) (0Dor /dwo) ™ (kapskices) ((120f) Y leAo/ TP (21)
from Egs. (19) and (20) we readily derive the excitation cdtthe KGAM zonal modey,,

(e + ) (e +74) = V2D - (22)

At threshold, Eq. (22) gives%w,th = 7,74, While the wavelength of the KGAM can be esti-
mated from Eq. (18), i.ev,, = A &~ wo(k2/k3,), yieldingkcp; ~ |wgr/wol'*ko.pi. The result
of Eq. (22) should be compared with the zero-frequency Zfegion rate]’. [38] ,

(Te+ve) (A% + (Te+72)?) =72 (Ce+7a) - (23)
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Here,v, is the ZF collisional dissipation rate [39], while [38, 40]

s = 20(r/ Ro) 2/ (1.64%0) (T3/ T2 (ODor /0wo) ™ (kopskees)* ({10l ) ) ledo/ Tl

(24)
Significantly above threshold, ~ vzp andl'; ~ ~,,. Thus, bothy, andI'; scale linearly with
Ay andk¢. That nonlinear excitation favors zonal modes at shorataglavelengths justifies
our suggestion that KGAM are preferentially excited by the@&/e parametric interactions de-
scribed here. Meanwhile?, /7%, = 4(r/Ro)'/?/(1.64%); i.e. the KGAM and zero-frequency
ZF generation rates have similar scalings, so that theativel importance may be ultimately
determined by the threshold condition, which for KGAM reagls, ,;, = 7,7 and was derived

above, while for zero-frequency ZF is giventy; ,;, = (v¢/74)(A* 4+ 77) [38].

Denote Age ™0t = qg(t)e ™!, A_e -t = q_(t)e™o'~wort and Ace™ ¢t = qac(t)e o,
Sincew,, is independent ok, in the lowest order, it is obvious to expect thatwill have a
toroidal mode number dependence via the wave frequency amder matching conditions;
thus,ac(t)e™™™ =" acn(t)e ™. Similarly, the KGAM zonal mode damping will reflect the
n dependence Via.,, typically increasing wittk.,p;, as suggested by Eq. (8). In this way, we
can rewrite the nonlinear dynamic system given by Eqgs. (28)@0) as

(& + ’}/gn) Aen = —(0/23)(12‘]{39”]{3(” <<|(i)0|2>> AonA—np, (25)
(8t + ’de) A_p = _(C/wOnB) (E/Te)(aDOr/awOn)_1k9nkﬁnag“na3n7 (26)
(8t - fVOn) Aop = (C/WOnB) (ﬂ/Te><8D07"/8w0n>_1k@nkgna(na*_n- (27)

Here, we have written Eq. (27) following the same derivatised for Eq. (26) andy,, is
the linear growth rate of the pump DW (ITG) with toroidal maa@mbern. In addition, we
have considered all possible pump DW (ITG) toroidal mode Iners, extending Egs. (19)
and (20). This driven-dissipative system based on 3-wauplows exhibits limit-cycle be-
haviors, period-doubling and route to chaos as possibieatidn of the existence of strange
attractors [41]. The 3-wave nonlinear system is charamdrby prey-predator self-regulation,
where KGAM are preferentially excited with respect to GAMhase of the radial wave-vector
dependence of the parametric excitation process. In fast, 25) to (27) obey the following
(plasmon) energy conservation laws

(at - 270n> |a0n‘2:_ (8t + 2’de> ‘a—nP ) (28)
1

(91 = 270n) a0n]*=—(2/1 ) (T1/ T2) (O Dor /i) ™ (|80l ) (@1 + 250) laca* (29)

These general properties are consistent with recent enpatal observations on HL-2A [27],
which show that electric field and density fluctuation raéialelopes are modulated by GAM
via an energy-conserving triad interaction; this is furtbenfirmed by cross- and auto- bi-
coherence analyses for interactions between GAM and tembdiluctuations that reflect the
resonant nature of GAM-DW nonlinear coupling [27]. In noriarm plasmas, it can be shown
that KGAM growth is limited by finite DW pump width and/é¢ mismatch [42].
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