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Abstract. Geodesic Acoustic Modes (GAM) are shown to constitute a continuous spectrum due to radial inho-
mogeneities. The existence of a singular layer causes GAM tomode convert to short-wavelength kinetic GAM
(KGAM) via finite ion Larmor radii; analogous to kinetic Alfvén waves (KAW). KGAM are shown to propagate
radially outward; consistent with experimental observations and numerical simulation results. The degeneracy
of GAM/KGAM with Beta induced Alfvén Eigenmodes (BAE) is demonstrated and discussed. We show that
energetic particle driven oscillations can be excited fromthe GAM continuum, similarly to the Energetic Particle
Mode (EPM) case. Furthermore, it is shown that KGAM can be nonlinearly excited by drift-wave (DW) turbu-
lence via 3-wave parametric interactions, and the resultant driven-dissipative nonlinear system exhibits typical
prey-predator self-regulatory dynamics. KGAM are preferentially excited with respect to GAM because of the
radial wave-number dependence of the parametric excitation process. Plasma non-uniformity effects on nonlinear
KGAM excitations are discussed.

In this work, we show that Geodesic Acoustic Modes (GAM) [1] constitute a continuous spec-
trum due to radial inhomogeneities. The existence of a singular layer, thus, suggests GAM
collisionless damping due to absorption at the GAM continuum resonance [2] and linear mode
conversion to short-wavelength kinetic GAM (KGAM) via finite ion Larmor radii (FLR) and
finite magnetic drift orbit widths (FOW) [3]. This result is demonstrated by derivations of
the GAM/KGAM mode structure and dispersion relation in the singular layer, indicating that,
typically, KGAM propagate radially outward [3]. The formalidentity of the GAM/KGAM
wave equation to that describing shear Alfvén wave (SAW) mode conversion to kinetic Alfvén
Wave (KAW) near the SAW resonance [4], suggests a complete analogy of GAM/KGAM
⇔ SAW/KAW. Our analyses also confirm that GAM and Beta induced Alfvén Eigenmodes
(BAE) [5, 6] are degenerate in the long wavelength limit, where diamagnetic effects are ig-
nored, even when FLR and FOW corrections are accounted for. Besides the importance of its
physics implications, the usefulness of this result on the BAE/GAM degeneracy is that we may
straightforwardly derive the governing equations for GAM using the kinetic theory results on
BAE developed earlier [7, 8, 9].

We show that dynamics of GAM/KGAM excitations should be addressed as initial value prob-
lem in the presence of a radial nonuniform source. Details ofthese analyses are reported in
a separate work. Since GAM/KGAM are toroidally and (nearly)poloidally symmetric struc-
tures, the source term can be associated with either an anisotropic distribution of (fast) par-
ticles in velocity space [10, 11] or by nonlinear excitations due to drift-wave (DW) turbu-
lence [3, 12, 13, 14]. In this work, we show that, while GAM/KGAM are linearly stable due
to ion Landau damping, they can be excited from the GAM continuum by energetic particles
(Section 2), in analogy to Energetic Particle Modes (EPM) [15], and by DW turbulence via
3-wave resonant parametric interactions (Section 3) [3]. GAM are important to turbulence
transport studies, since their low frequency radial structures can scatter DW fluctuations to sta-
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ble short-wavelength domain and, thereby, suppress the DW turbulence transport [12, 13]. In
addition, the BAE/GAM degeneracy and the possibility of exciting structures with different
characteristic scales at the same frequency by a variety of dynamic interactions have a peculiar
important role in influencing cross-scale couplings of meso- and micro-scales and thereby long
time-scale behaviors in burning plasmas [16, 17].

1. GAM radial structures, GAM continuous spectrum and BAE/GAM degeneracy.

The BAE/GAM degeneracy can be easily demonstrated considering the magnetic flux surface
averaged quasineutrality condition for axisymmetric fluctuations (toroidal mode numbern =
0), which reads

J−1∂r (J |∇r|2δJr) ≃ ∂r

(

δJr

)

= 0 , (1)

whereδJr is the fluctuating radial current and(...) denotes magnetic flux surface averaging.
Here, we have considered radially localized fluctuations ina general axisymmetric toroidal
equilibrium with straight field line flux coordinates(r, θ, ξ) and JacobianJ−1 = ∇r×∇θ ·∇ξ.
Meanwhile, the equilibrium magnetic field is given by the Clebsch representation,B = ∇(ξ −
qθ)×∇ψp, with q(ψp) = B ·∇ξ/B ·∇θ = dψ/dψp andψ(ψp) the toroidal (poloidal) magnetic
flux function. Equation (1) describes GAM as well as flute-like SAW, like BAE, near the
qR0k‖ = nq − m = 0 surface,m being the poloidal mode number andR0 the torus major
radius. Atk‖ = 0 and forω∗/ω → 0, with ω∗ the diamagnetic frequency, the GAM and BAE
dynamics must be identical since, for both fluctuations, thedynamic behavior is dominated by
the particle response to the radial electric field, which reflects the particle radial magnetic drifts
associated with geodesic curvature [3].

DefiningΩ ≡ (ω/ωti), with ωti = vti/(qR0) the ion transit frequency andvti = (2Ti/mi)
1/2,

and using Eqs. (12) and (14) of [7], we readily cast Eq. (1) above in the following form:

∂r

(

N0Λ
2
0(Ω)∂rδφ

)

= 0 , (2)

Λ2
0(Ω) = 1 +

(

q2/Ω
) (

F (Ω) −N2(Ω)/D(Ω)
)

. (3)

Here,N0 = N0(r) is the plasma density, which we assumed the same for electrons and unit
charge ions,Λ2

0 is theΛ2 function introduced in [7, 18] evaluated atω∗/ω = 0 and renormalized
by a factorv2

A/(qR0ω)2, with vA the Alfvén speed. Meanwhile,F (Ω) = Ω(Ω2 + 3/2)+ (Ω4 +
Ω2 + 1/2)Z(Ω),N(Ω) = Ω + (1/2 + Ω2)Z(Ω),D(Ω) = Z(Ω) + (1 + 1/τ)(1/Ω), τ = Te/Ti

andZ(Ω) ≡ π−1/2
∫∞

−∞
e−y2

/(y−Ω)dy is the plasma dispersion function. Equation (3), based
on the results of [7] and on the proof that BAE and GAM spectra are degenerate forω∗/ω →
0 [16, 17, 19], is valid in thekrρiq ≪ 1 limit (kr is the radial wave vector andρi = vti/ωci the
ion Larmor radius, withωci = (eB)/(mic)) and coincides with the corresponding expressions
given by Sugama et al. [20] and by Gao et al. [21] in theTe/Ti = 0 limit. From Eq. (3),
it is readily verified thatΛ0 depends onTe(r), Ti(r) andq(r), which are all functions of the
radial position. Equation (2) is similar to that describingthe SAW resonance [2] and, thus,
demonstrates that GAM constitutes a continuous spectrum described byΛ2

0 = 0, giving the
solutionω = ωGAM(r). Note that the crucial feature of continuous spectra is not that of
a space-dependent frequency: in particular, fluctuations of the (GAM) continuous spectrum
consist of singular structures, whose time asymptotic behavior is quasi-exponential [22, 23]
∝ (1/t) exp(−iωGAM(r)t) due to collisionless absorption [24]. The singular nature of the
fluctuations is embedded in the corresponding value ofkr, which increases in time as [25]

kr ≃ −(dωGAM(r)/dr)t . (4)
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Equation (4) can be viewed as a physical manifestation of phase mixing [24] of fluctuations
belonging to the GAM continuous spectrum and, as such, it is an observable phenomenon: see
e.g. Fig. 4 of Ref. [26] for a visualization of this effect from numerical simulations. Experi-
mentally, when the system is globally perturbed with a broadband frequency spectrum at some
initial time, phase mixing as described by Eq. (4) should be visible as radial spreading of the
fluctuations belonging to the continuous spectrum with characteristic speed scaling as the phase
velocity [27]. Whenkrρiq ∼ 1 additional phenomena start becoming important as discussed
below. The existence of continuous spectra should not be ignored for a correct description
of the relevant dynamics. In fact, even when the continuous spectrum is analyzed in kinetic
theory, when FLR/FOW effects may be invoked and discretize the continuum description, it is
the intrinsic time scale of the process that matters and determines the system behavior, e.g. the
inverse mode growth rate (γ−1

L ). This behavior has been demonstrated for EPM, which can be
excited from the SAW continuum discretized as a collection of Kinetic Toroidal Alfvén Eigen-
modes (KTAE): above the EPM excitation threshold, the cumulative effect of weakly driven
KTAE on the EPM corresponds exactly to the continuum dampingexpression [28], since the
discrete KTAE are indistinguishable on a≈ γ−1

L time scale. In Section 2, we demonstrate
that this same qualitative behavior is expected with the GAMcontinuum, from which energetic
particles can excite a discrete mode when the drive exceeds continuum damping.

In the long wavelength limit, the GAM/KGAM dielectric function ǫg is readily derived using
BAE/GAM degeneracy and is given in the form [3]

ǫg = b
[

Λ2
0 − b

(

3/4 + (q2/Ω)S0(Ω)
)]

, (5)

whereb = k2
rρ

2
i /2, S0(Ω) is the functionS(Ω), defined in Eq. (B28) of [8] and Eq. (21) of [9],

evaluated atω∗/ω = 0, i.e.

S0(Ω) =
q2

2Ω2

[

L(Ω) − 2L

(

Ω

2

)

− 2N(Ω)

D(Ω)

(

H(Ω) − 2H

(

Ω

2

))

+
N(Ω)2

D(Ω)2

×
(

F − 2F

(

Ω

2

))]

+ T (Ω) − 2N(Ω)

D(Ω)
V (Ω) +

N(Ω)2

D(Ω)2
Z(Ω) +

q2

Ω2D(Ω/2)

×
[

F

(

Ω

2

)

− F (Ω) − N(Ω)

D(Ω)

(

N

(

Ω

2

)

−N(Ω)

)]2

, (6)

with L(Ω) = Ω7 + (5/2)Ω5 + (19/4)Ω3 + (63/8)Ω + (Ω8 + 2Ω6 + 3Ω4 + 3Ω2 + 3/2)Z(Ω),
H(Ω) = Ω5 + 2Ω3 + 3Ω + (Ω6 + (3/2)Ω4 + (3/2)Ω2 + 3/4)Z(Ω), T (Ω) = Ω3 + (5/2)Ω +
(Ω4 + 2Ω2 + (3/2))Z(Ω) andV (Ω) = Ω+(Ω2 + 1)Z(Ω). In the fluid limit, |Ω| = |ω/ωti| ≫
1, one readily derives from Eq. (5) [3] the expression given in[29] and confirms that FLR/FOW
effects strengthen GAM collisionless dissipation [20].

Since nonlinear excitation favors short KGAM radial wavelengths (see Section 3), we need to
relax thekrρiq ≪ 1 assumption in Eqs. (3) to (5) and derive corresponding expressions that are
valid at short wavelength. It can be shown that a very compactexpression forǫg can be derived
for for 1/q2 ≪ krρi ≪ 1 [30], i.e.,ǫg = Reǫg + iImǫg with

Reǫg = b

{

1 −
(

7

4
+ τ

)

q2

Ω2
+ b

q2

Ω2

(

31

16
+

9

4
τ + τ 2

)

− q2

Ω4

(

23

8
+ 2τ +

τ 2

2

)

− b
q4

Ω4

(

747

32
+

481

32
τ +

35

8
τ 2 +

1

2
τ 3

)}

, (7)
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Imǫg =
√

2
ω

|ω| exp {−|Ω|/(
√

2bq)}
[

1 +

√
2bq

|Ω| +
2bq2

Ω2
(1 + 5τ/4 + τ 2)

−2b+
1

24

(

Ω2

4b2q4
−

√
2b|Ω|
b2q3

)]

. (8)

With this expression forǫg, the GAM/KGAM collisionless damping rates are in excellentagree-
ment with recent TEMPEST numerical simulations [30, 31].

With the formal substitutionΛ2
0 → b−1ǫg, with ǫg provided by either Eq. (5) or (7) and (8),

the structure of Eq. (2) is identical to that describing SAW mode conversion to KAW near the
SAW resonance [4]. Thus, GAM mode conversion to short wavelength KGAM is expected
near the singular layer (Λ2

0 = 0), with the well-known Airy function behavior for the homo-
geneous solution of the modified Eq. (2) [4]. Equations (5) or(7) and (8) also confirm that
GAM/KGAM propagate outwards, except for sufficiently lowTe/Ti at q < 2.6 [3]. The Airy
function behavior for the homogeneous solution of Eq. (2), modified by FLR/FOW [4] as pre-
scribed by Eqs. (5) or (7) and (8), does not allow solving for the GAM/KGAM frequency,
which remains undetermined until the non-homogeneous problem is solved in the presence of
a source term [4]. Global sources that excite the system witha broad band frequency spectrum
at some initial time tend to excite the GAM continuum, while amore localized source with a
narrow frequency spectrum tends to excite KGAM. The time coherence of the source is there-
fore an important factor as well, since it introduces some characteristic time and corresponding
frequency in GAM/KGAM excitations. The initial value problem of GAM/KGAM excitation
in the presence of a radial nonuniform source will be addressed in a separate work. Here, we
discuss GAM excitation by energetic particles (Section 2) and by DW turbulence via 3-wave
resonant parametric interactions (Section 3).

2. GAM excitation by energetic particles and connection with EPM.

As in the case of the SAW continuum, from which EPM are excitedwhen wave-particle res-
onant drive exceeds continuum damping, energetic particles can excite modes from the GAM
continuum. Energetic particles are readily included into Eq. (1), since it coincides with the flux
surface averaged vorticity equation. This, in turn, can be taken in the reduced form of Eq. (13)
of Ref. [32], which is appropriate for investigating fast ion excitations of low frequency waves.
Combining the flux surface averaged Eq. (13) of Ref. [32] withEq. (2) of Ref. [3], one has

−1

r

∂

∂r

(

βiΩ
2

q2R2
0

rΛ2
0(Ω)

∂

∂r
δφ̄

)

=

〈

4πeE

c2
J0(k⊥ρE)ωωdEδKE

〉

. (9)

Here, we have separated the flux surface averaged response inthe scalar potential fluctuation,
δφ = δφ̄ + δφ̃ andβi = 8πN0Ti/B

2
0 . SubscriptsE indicate fast ion quantities, character-

ized by electric chargeeE, massmE, Larmor radiusρE = mEcv⊥/(eEB0) and equilibrium
distribution functionF0E. The Bessel functionJ0(k⊥ρE) accounts for energetic ions FLR,
k⊥ is the perpendicular wave vector,ωdE is the energetic particle magnetic drift frequency,
ωdE = mEc/(eEB0)(k×b) ·κ(v2

⊥/2+ v2
‖), κ = b ·∇b is the magnetic curvature,b = B0/B0

and the non-adiabatic fast ion response is given by
[

v‖∇‖ − i (ω − ωd)
]

E
δKE = i

( e

m

)

E
QF0EJ0(k⊥ρE)

[(

δφ− δψ̃
)

+
(ωd

ω

)

E
δψ̃
]

. (10)

By definition, we haveQF0E = 2ω∂v2F0E+mEc/(eEB0)(k×b)·∇F0E andδÃ‖ ≡ −i (c/ω)b·
∇δψ̃, having considered that the flux surface averaged parallel vector potential is negligible for
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GAM. In deriving Eq. (9), terms containingδψ̃ are negligible in the flux surface averaging. The
term on the r.h.s. describes the GAM excitation by energeticparticles via geodesic curvature
coupling, which requiresF0E velocity space anisotropy since GAM are nearly(n,m) = (0, 0)
toroidally and poloidally symmetric modes, while we dropped the fast ion residual contribution
to the polarization current as it is typically negligible [32].

When Eq. (9) is solved as a boundary value problem, global GAMstructures can be found [33],
that are destabilized by the fast ions [34]. Furthermore, inthe small fast ion orbit limit, the
r.h.s. of Eq. (9) has the form−∂r

(

βi/(q
2R2

0)∆Ω2
E∂rδφ̄

)

; thus, the local GAM continuum fre-
quency [3] is shifted according toΩ2 = Ω2

GAM +∆Ω2
E [35]. This result follows the same idea of

[36] for evaluating the effect of energetic ions on the accumulation point of the TAE frequency
gap. Generally, however, energetic ion orbits are not smalland give negligible contribution
in the inertial layer region. Equation (9) is structurally the same as Eq. (23) of [37], where it
was shown that bound states can be obtained with localized energetic ion radial profiles, which
drive the mode where the source term is strongest. For energetic ions localized atr0, we assume
r.h.s. ∝ exp(−(r− r0)

2/L2
E) ≃ 1− (r− r0)

2/L2
E [37], with LE the characteristic scale of the

energetic ion radial profile. Summarizing the results of [37], localized solutions (bound states),
which are affected by an exponentially small continuum damping, exist if |LC | ≫ LE with
L−1

C = ∂r0
ln Λ2

0(Ω
2
0; r0), whereΩ0 is the mode frequency and we have explicitly maintained

the dependence ofΛ0 on r. More detailed discussions of this case and of the analogy [37]
with EPM [15] will be given in a separate work. Here, we want tofocus on the opposite limit,
|LC | ≪ LE, when coupling of the mode with the GAM continuum becomes of order unity.
Since the mode structure is∂rδφ̄ ≃ C/ (r0Λ

2
0(Ω

2
0; r0)) /(1 + (r − r0)/LC) in the inertial layer

at r ≃ r0, one can readily construct the following dispersion relation (variational principle)

iπβiΩ
2sgn(Ω)

|r0∂r0
Λ2

0(Ω
2; r0)|

= δWE(Ω) = q2(r0)R
2
0|C|−2

∫

rdrδφ̄∗RHS[Eq. (9)] , (11)

where the l.h.s. represents GAM continuum damping andδWE plays the role of potential
energy due to fast ion contributions in the ideal regions. Equation (11) is the exact counterpart
of the EPM dispersion relation [15]. In fact, near marginal stability,

γ

|ω0|
= (−Ω0∂Ω0

ReδWE)−1

(

sgn(Ω0)ImδWE − πβiΩ
2
0

|r0∂r0
Λ2

0(Ω
2
0; r0)|

)

, (12)

expressing the mode excitation when the mode drive by fast ions exceeds continuum damping.
Meanwhile, the real mode frequency is given byReδWE(Ω0) ≃ 0, i.e. it is determined by fast
ions nonresonant response. For consistency, we must also have |LC | ≪ LE, i.e. Λ2

0(Ω
2; r0)

must be sufficiently small, otherwise the|LC | >∼ LE limit applies. In this way, the mode
frequency driven by the localized energetic ion source is not too different from the local GAM
continuum frequency [3].

3. GAM/KGAM nonlinear excitation by drift-wave turbulence.

Here, we follow the approach of Ref. [38] and assume that a pump wave in DW turbulence
spectrum (e.g. an ITG mode) is characterized by frequencyω0 and wave-vectork0, while the
corresponding scalar potential in toroidal geometry is

δφ0 = A0e
−in0ξ

∑

m

eimθ−iω0tφ0(n0q −m) + c.c. , (13)
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whereA0 is the mode amplitude andφ0(n0q − m) provides the radial structure of the single
poloidal harmonicsm for fixed toroidal mode numbern0. It has been recently demonstrated [3]
that the pump DW can spontaneously decay into a zonal mode (KGAM), given by δφr =
Are

ikζr−iωζt + c.c. and characterized by(ωζ,kζ), and a lower-sideband DW (ITG)

δφ− = A−e
in0ξ+ikζr−iω

−
t
∑

m

e−imθφ∗
0(n0q −m) + c.c. , (14)

with ω− = ωζ − ω∗
0 andk0 + k− = kζ = r̂kζ. Following Ref. [38] and averaging on the fast

radial variations∝ |φ0(n0q − m)|2, associated with the local structures of the DW poloidal
harmonics, the zonal mode evolution equation in the local radial limit becomes [3]

∂tǫgAζ = −(c/2B)αikθkζk
2
ζρ

2
i

〈〈

|φ̂0|2
〉〉

A0A− , (15)

where [38]αi = δP⊥i0/(eN0δφ0)+1, δP⊥i0 is the perpendicular ion pressure fluctuation due to

the pump DW (ITG) and
〈〈

|φ̂0|2
〉〉

=
∑

m

∫ m+1/2

m−1/2
|φ0(n0q −m)|2d(n0q) =

∫ +∞

−∞
|φ̂0(η)|2dη,

with φ̂0(η) ≡ (2π)−1/2
∫ +∞

−∞
exp[i(n0q −m)η]φ0(n0q −m)d(n0q −m). Given the pump DW

(ITG) and the zonal mode (KGAM) and denoting withD− the sideband dispersion function,
the lower-sideband DW (ITG) obeys the same evolution equation discussed in Ref. [38], i.e.

D−A− = (i/ω0)(c/B)kθkζ(Ti/Te)AζA
∗
0 , (16)

D− ≃ (∂D0r/∂ω0) (∆ − ωζ − iγd) . (17)

Here,D0r is the Hermitian part of the DW (ITG) dispersion function,γd is the sideband
damping,∆ = (k2

ζ/2)(∂D0r/∂ω0)
−1(∂2D0r/∂k

2
0r) = ω0 − ω1 and ω1 is the solution of

D0r(ω1,k0θ ± kζ) = 0 [38]. From Eqs. (15) and (17), the frequency resonance condition
for the resonant decay gives

{

ωζ = ωgr + iγζ

ωgr = ∆
, (18)

where the real KGAM zonal mode frequency,ωgr, is such thatǫgr(ωgr) = 0. Given Eq. (18), we
readily haveǫg ≃ (i/ωgr)k

2
ζρ

2
i (γζ+γg), with γg the KGAM damping, andD− ≃ −i(∂D0r/∂ω0)

× (γζ + γd) from Eq. (17). In this way, Eqs. (15) and (16) become, respectively,

(γζ + γg)Aζ = −(c/2B)αikθkζ

〈〈

|Φ̂0|2
〉〉

A0A− , (19)

(γζ + γd)A− = −(c/ω0B)(∂D0r/∂ω0)
−1(Ti/Te)kθkζAζA

∗
0 . (20)

Denotingc2s = Te/mi, ρ2
s = c2s/ω

2
ci and

γ2
RD = αi(Ti/Te)/(2ω0)(∂D0r/∂ω0)

−1(kθρskζcs)
2

〈〈

|Φ̂0|2
〉〉

|eA0/Te|2 , (21)

from Eqs. (19) and (20) we readily derive the excitation rateof the KGAM zonal mode,γζ,

(γζ + γg) (γζ + γd) = γ2
RD . (22)

At threshold, Eq. (22) givesγ2
RD,th = γgγd, while the wavelength of the KGAM can be esti-

mated from Eq. (18), i.e.ωgr = ∆ ≈ ω0(k
2
ζ/k

2
0r), yieldingkζρi ≈ |ωgr/ω0|1/2k0rρi. The result

of Eq. (22) should be compared with the zero-frequency ZF generation rate,Γζ [38] ,

(Γζ + νζ)
(

∆2 + (Γζ + γd)
2
)

= γ2
M(Γζ + γd) . (23)
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Here,νζ is the ZF collisional dissipation rate [39], while [38, 40]

γ2
M = 2αi(r/R0)

1/2/(1.6q2ω0)(Ti/Te)(∂D0r/∂ω0)
−1(kθρskζcs)

2

〈〈

|Φ̂0|2
〉〉

|eA0/Te|2 .

(24)
Significantly above threshold,γζ ≃ γRD andΓζ ≃ γM . Thus, bothγζ andΓζ scale linearly with
A0 andkζ . That nonlinear excitation favors zonal modes at short radial wavelengths justifies
our suggestion that KGAM are preferentially excited by the 3-wave parametric interactions de-
scribed here. Meanwhile,γ2

M/γ
2
RD = 4(r/R0)

1/2/(1.6q2); i.e. the KGAM and zero-frequency
ZF generation rates have similar scalings, so that their relative importance may be ultimately
determined by the threshold condition, which for KGAM readsγ2

RD,th = γgγd and was derived
above, while for zero-frequency ZF is given byγ2

M,th = (νζ/γd)(∆
2 + γ2

d) [38].

DenoteA0e
−iω0t = a0(t)e

−iω0t, A−e
−iω

−
t = a−(t)eiω0t−iωgrt andAζe

−iωζt = aζ(t)e
−iωgrt.

Sinceωgr is independent ofkζ in the lowest order, it is obvious to expect thatkζ will have a
toroidal mode number dependence via the wave frequency and number matching conditions;
thus,aζ(t)e

ikζr =
∑

n aζn(t)eikζnr. Similarly, the KGAM zonal mode damping will reflect the
n dependence viakζn, typically increasing withkζnρi, as suggested by Eq. (8). In this way, we
can rewrite the nonlinear dynamic system given by Eqs. (19) and (20) as

(∂t + γgn) aζn = −(c/2B)αikθnkζn

〈〈

|Φ̂0|2
〉〉

a0na−n, (25)

(∂t + γdn) a−n = −(c/ω0nB)(Ti/Te)(∂D0r/∂ω0n)−1kθnkζnaζna
∗
0n, (26)

(∂t − γ0n) a0n = (c/ω0nB)(Ti/Te)(∂D0r/∂ω0n)−1kθnkζnaζna
∗
−n. (27)

Here, we have written Eq. (27) following the same derivationused for Eq. (26) andγ0n is
the linear growth rate of the pump DW (ITG) with toroidal modenumbern. In addition, we
have considered all possible pump DW (ITG) toroidal mode numbers, extending Eqs. (19)
and (20). This driven-dissipative system based on 3-wave couplings exhibits limit-cycle be-
haviors, period-doubling and route to chaos as possible indication of the existence of strange
attractors [41]. The 3-wave nonlinear system is characterized by prey-predator self-regulation,
where KGAM are preferentially excited with respect to GAM because of the radial wave-vector
dependence of the parametric excitation process. In fact, Eqs. (25) to (27) obey the following
(plasmon) energy conservation laws

(∂t − 2γ0n) |a0n|2=− (∂t + 2γdn) |a−n|2 , (28)

(∂t − 2γ0n) |a0n|2=−(2/ω0nαi)(Ti/Te)(∂D0r/∂ω0n)−1

〈〈

|Φ̂0|2
〉〉−1

(∂t + 2γgn) |aζn|2 .(29)

These general properties are consistent with recent experimental observations on HL-2A [27],
which show that electric field and density fluctuation radialenvelopes are modulated by GAM
via an energy-conserving triad interaction; this is further confirmed by cross- and auto- bi-
coherence analyses for interactions between GAM and turbulent fluctuations that reflect the
resonant nature of GAM-DW nonlinear coupling [27]. In nonuniform plasmas, it can be shown
that KGAM growth is limited by finite DW pump width and/orkζ mismatch [42].
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