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Abstract. Experimental observations show that there is a magnetic field threshold for runaway electron

generation in tokamak disruptions. A possible explanation for these observations is that the runaway

beam excites whistler waves that scatter the electrons in velocity space and prevents the beam from

growing. The growth rates of the most unstable whistler waves are inversely proportional to the magnetic

field strength. Taking into account the collisional and convective damping of the waves it is possible to

derive a magnetic field threshold below which no runaways are expected. In this work, this magnetic

field threshold is compared with a criterion for substantial runaway production obtained by calculating

how many runaway electrons can be produced before the induced toroidal electric field diffuses out of

the plasma. It is shown, that even in rapidly cooling plasmas, where hot-tail generation is expected to

give rise to substantial runaway population, the whistler waves can stop the runaway formation below a

certain magnetic field unless the post-disruption temperature is very low.

1. Introduction

Due to a sudden cooling of the plasma in tokamak disruptions a beam of relativistic
runaway electrons is sometimes generated, which can cause damage on plasma facing
components due to highly localized energy deposition. This problem becomes more seri-
ous in larger tokamaks with higher plasma currents and understanding of the processes
that may limit or eliminate runaway electron generation is very important for future
tokamaks, such as ITER. In present tokamak experiments it is observed that the number
of runaway electrons generated depends on the magnetic field strength. Several large
tokamaks have reported that no runaway generation occurs unless the magnetic field B
exceeds 2 T [1, 2]. Above this threshold, the runaway generation shows a non-linear
dependence on B, and a doubling of B results in an increase of the photo-neutron pro-
duction by two orders of magnitude [3]. The whistler wave instability (WWI) excited by
runaway electrons may provide an explanation for this observation. The growth rates of
the most unstable whistler waves are inversely proportional to the magnetic field strength
and the WWI causes a rapid pitch-angle scattering of the runaways and may stop run-
away beam formation [4, 5]. The aim of the present work is to analyze the magnetic
field threshold for runaway generation due to the WWI and compare with the criterion
for runaway avalanche (CRASH) based on the coupled dynamics of plasma current and
runaway generation. This theoretical criterion for substantial runaway generation has
been derived in [6, 7], but without the effect of the hot-tail generation of runaways [8]. In
this work we derive more complete criteria both for the WWI by taking into account the
localization of the runaway beam that gives rise to convective damping of the waves and
for CRASH by including the hot-tail generation of runaways. We analyze the relevance
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of the two different mechanisms for JET and ITER-like disruption scenarios. It is shown,
that even in rapidly cooling plasmas, where hot-tail generation is expected to give rise to
substantial runaway population, the whistler waves can stop the runaway formation at a
certain magnetic field (of the order of 2 T in JET) unless the post-disruption temperature
is very low (below 10 eV).

2. WWI

The runaway electron beam has a strongly anisotropic velocity distribution. When the
degree of anisotropy exceeds a critical level, unstable whistler waves, with frequencies well
below the non-relativistic electron cyclotron frequency ωce but above the ion cyclotron
frequency ωci are excited. Assuming k2⊥v

2
T e ¿ ω2, where vT e is the electron thermal

velocity, the dispersion relation of these waves can be simplified to [5]
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where ω is the wave frequency, k‖ and k⊥ are the parallel and perpendicular components
of the wave number, vA = cωci/ωpi is the Alfvén velocity, ωpi is the ion plasma frequency,
c is the speed of light, χrij denotes the runaway contribution to the susceptibility tensor.
Without runaways, for k2‖c

2/ωpi2 À 1 and (k2 + k2‖)v
2
A ¿ ωciωce, the dispersion relation

can be further simplified to obtain the usual relation for the whistler wave ω = kk‖v
2
A/ωci.

Numerical simulations in [4] showed that the most important interaction occurs at the
anomalous Doppler resonance ω−k‖v‖ = −ωce/γ, where v‖ is the particle velocity parallel
to the magnetic field and γ is the relativistic factor. The linear growth rates of these waves
are such that they are stable for high magnetic field (so the runaway beam can form) but
unstable for low magnetic field. In Ref. [4] it was shown that the linear growth rate of a
small perturbation ω = ω0 + δω is γi = Imδω = (k − k‖)2v2Aω0Imχr(t)/2ωpi2, with
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In this expression, ω2pr = nre
2/me0ε0, and Jn is the Bessel function of the first kind and

order n with the argument z = k⊥p⊥c/ωce. The quantity fr = f/nr is the normalized
secondary runaway distribution function [4]

f(p‖, p⊥, t) =
αnr

2πcZp‖
exp
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− p‖
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)

, (3)

where α = (Ê − 1)/(1 + Z), Ê = e|E|τ/me0c is the normalized parallel electric field,
τ = 4πε20m

2
e0c

3/nee
4 ln Λ is the collision time for relativistic electrons, me0 is the electron

rest mass, Z is the effective ion charge and cZ =
√

3(Z + 5)/π ln Λ. The distribution in (3)

is valid if Ê À 1 and secondary generation of runaways is dominant, as expected to be the
case in large tokamak disruptions. The runaway density grows as dnr/dt = (Ê−1)nr/cZτ

[9], giving nr = nr0 exp
[

(Ê − 1)t/(τcZ)
]

if the electric field is assumed constant in time,
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and where nr0 denotes the seed produced by primary (Dreicer+hot-tail) generation.

Usually, in low-temperature plasmas, the dominant damping process is the electron-ion
collisional damping, with γd ' 1.5τ−1ei [10], where τei = 3π3/2m2

e0v
3
T eε

2
0/niZ

2e4 ln Λ is the
electron-ion collision time. If the runaway beam is localized with an effective beam radius
Lr then the wave-convection out from the region where the beam is localized gives a
damping term γv ≡ (∂ω/∂k⊥)/(4Lr) = v2Ak‖/4ωciLr [5]. At low density, high temperature
and strong magnetic field this term can be comparable to the collisional damping γd. The
total linear growth rate of the WWI is then γl = γi − γd − γv.

The linear stability analysis in [4] has shown that the frequency, growth rate and wave
number of the most unstable wave are approximately ω0 = ωce/cZ , γi = 1.3 · 10−9nr/BT,
k0 = ωpi/2vA = 3 · 104n19BT m−1, and k‖0 = 2ωce/(ccZ) = 30BT m−1, where BT is the
toroidal magnetic field in Teslas and ne = n1910

19 m−3 is the electron density. These
values for the most unstable frequency and wave number have been calculated without
taking into account the convective damping, the effect of which can be shown to reduce
the values of k0 and k‖0 (still within the assumptions applied here) but the growth rate
γi is quite insensitive to the exact magnitude of k0 and k‖0 [4].

From the linear instability threshold γl > 0 for the most unstable wave one can derive a
threshold for the fraction of runaways required for destabilization

nr
ne

>
Z2BT

20T
3/2
eV

+
B3
T

90cZn219Lr
(4)

where TeV is the post-disruption electron temperature in eVs. Here, the first term on
the right hand side is due to the collisional damping and the second term is due to
the convective damping of the WWI. The lower the magnetic field and higher the post-
disruption temperature the less runaways are needed for the destabilization of WWI.
The threshold presented in (4) is calculated using the wave numbers k0 and k‖0 given
above. Numerical simulations show that the most unstable wave numbers are lower if
convective damping is taken into account and slightly less runaway electrons are needed
for destabilization [5].
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Figure 1: Stability threshold from Eq.(4) for different Lr. The thickest line is for Lr =∞,
the line with middle-thickness is for Lr = 0.4 m and the thinnest line is for Lr = 0.2 m.
Left figure is for ne = 5 · 1019 m−3 and right figure is for ne = 1020 m−3.

Figure 1 shows the stability threshold from Eq.(4) for different beam radii and fractions
of runaways. The thickest line represents the case with a wide runaway beam so that
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convective damping is negligible. The thinner lines correspond to thinner runaway beams.
Interestingly, the decreasing runaway beam radii lead to lower magnetic field thresholds
for a given post-disruption temperature and these values for the magnetic field threshold
become effectively independent of the temperature above a certain value. Note specifically
in the left figure, that the curve corresponding to the parameters Lr = 0.2 m and ne =
5 · 1019 m−3 shows a threshold in the magnetic field around 2 T for nr/ne = 10−3.

The evolution of the runaway distribution and the whistler wave spectral energy coupled
through the quasi-linear diffusion process is illustrated on Figure 2 based on the study
[5]. As a result of the wave-particle interaction, the particle distribution becomes more
isotropic. As the main driving term ∂f/∂p⊥ becomes smaller, the whistler wave becomes
marginally stable (γk <∼ 0), but as the runaway density increases due to collisional pro-
cesses, the wave is destabilized again, which leads to further velocity isotropization. If the
plasma parameters are such that the whistler wave is destabilized, the time-scale of the
isotropization is of the order of 10−5 s. Note that the time-scale of the linear and quasi-
linear evolution of the instability is much shorter than the runaway avalanche growth
time. The pitch-angle diffusion leads to higher synchrotron radiation emission [11] that
lowers the runaway electron energy and this should lead to a rapid quench of the resonant
part of the runaway beam as soon as the runaway density reaches the threshold.
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Figure 2: Runaway electron distribution functions and wave spectral energies plotted for
two time slices of the quasi-linear interaction of whistler waves and runaway electrons:
beginning of the quasi-linear diffusion and development of the second phase (B = 2 T,
ne = 5 · 1019 m−3, Te = 10 eV, E‖ = 40 V/m, Lr = 0.2 m)
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3. CRASH

The magnetic field dependence of runaway generation is introduced via the on-axis current
density j0 = 2B/µ0qR, which is proportional to the magnetic field if the central safety
factor q can be assumed to be limited to a value around 1−2 due to operational constraints.
A higher on-axis current density leads to higher post-thermal quench electric field, which
leads to stronger initial runaway generation by the Dreicer and hot-tail mechanisms. The
“seed” produced by these processes is amplified by the secondary avalanche mechanism,
the strength of which depends on the total plasma current I0. The runaway population in
tokamaks with large current (e.g. JET, ITER) is mainly produced by the avalanche, but
it is very sensitive to the seed runaway density, and therefore also to the magnetic field.

Based on the approximate solution of two coupled differential equations for the runaway
electron density and plasma current, a criterion for substantial runaway generation was
first derived in [6] and later refined in [7]. A zero-dimensional model describes the time-
dependence of the electric field E induced by the falling current I

E ≈ − L

2πR

dI

dt
(5)

where the plasma inductance can be assumed to be L ' µ0R. The current is the sum of the
Ohmic and runaway currents I = jAeff = (σE + nrec)Aeff, where j is the on-axis current
density, Aeff is an effective cross section area of the current, and σ is the conductivity.
The criterion derived in [6] and [7], which included only Dreicer and avalanche runaway
generation, will here be extended to account also for the hot tail mechanism.

Recent work [8] derived analytical estimates for the amount of hot-tail runaway electrons
generated in plasmas with an exponential temperature decrease given by T = T0e

−t/t0 .
For a sudden temperature decrease, the hot-tail generated runaways are given by

nh = n0
2√
π
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−u2
c , (6)
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In these expressions, ν0 = n0e
4 ln Λ/(4πε2m2

ev
3
T0) is the initial (pre-disruption) collision

frequency of the thermal electrons, n0 and vT0 are the initial background electron density
and thermal speed, and ED0/E0 is the initial ratio of the Dreicer field and parallel electric
field.

We assume that the density of seed runaways is the sum of the hot-tail runaway density
and the Dreicer generated runaway density. If the runaway current remains a small
fraction of the total current, the seed runaway population will be amplified a factor eα

by the avalanche, and the total number of runaways will be nr = (nD + nh)e
α, where

α = (
√
2π/3)(I0/IA ln Λ) and IA = 0.017 MA is the Alfvén current. On the other hand,

if the runaway current replaces a large fraction of the Ohmic current, this will cause the
electric field to decrease, and the runaway current to saturate before it reaches the initial
current I0. Since this saturation mechanism only comes into play when a considerable
runaway current fraction has already been produced, it is not necessary to take it into
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account in order just to estimate whether or not this will happen. For this, one only needs
to determine if S ≡ lnnr > 0, so the criterion for large runaway production is

S = α + ln
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where E/ED and Te should be evaluated after the thermal quench. Due to the weak
dependence of the hot tail generation on ED/E compared with the dependence on ν0t0,
the BT dependence of S comes mainly from the Dreicer mechanism. The avalanche term
α depends only on I0, which we choose to vary independently of BT.

The runaway current evolution was calculated using a zero-dimensional numerical model
based on equation (5) and the equation for runaway generation including hot-tail gener-
ation according to the velocity moment method described in Ref. [8]. This shows that
the CRASH criterion gives a good approximation for the parameter region of significant
runaway production.

4. Discussion

Similarly to the WWI-threshold, CRASH shows that runaway generation is expected only
for magnetic fields above a certain threshold, which depends on the initial plasma current
and the electron density and temperature. Approximately, for JET-like values (q = 1.5,
R = 3, I0 = 2 MA), when hot-tail generation is not very strong, (8) can be written as

BT > n19
√

TeV/IMA/4, (9)

where IMA is the initial plasma current in megaamperes. Note that to keep q and I0
constant while varying BT (or equivalently j0) corresponds to varying the current cross
section Aeff. For ITER-like values (q = 1.5, R = 6, I0 = 15 MA), the hot-tail generation
is dominant and (8) is always positive, unless ν0t0 is very large. This means that CRASH
does not lead to a threshold in the magnetic field for ITER-like parameters.

Figure 3 compares the magnetic field determined by WWI and CRASH for JET-like and
ITER-like parameters. Above the CRASH-lines S > 0 and substantial runaway generation
is expected. Above theWWI-lines whistler waves are stable and a runaway beam can form.
For temperatures less than ∼ 10 eV, the magnetic field threshold for stability of whistler
waves is very low, and therefore the WWI will not stop the runaway beam formation. But
for temperatures above 10 − 20 eV, as the convective damping becomes comparable to
collisional damping, the temperature dependence becomes less important and the WWI
leads to a threshold around 2 T for both JET-like and ITER-like parameters. Due to
the strong magnetic field dependence of the convective damping, the threshold for WWI
turns out to be only weakly dependent of the other plasma parameters. A more exact
threshold for the destabilization can be obtained by numerical simulations described in
[5], and this would shift the WWI-curves toward lower temperatures by about 20-30%.

In the JET-like case CRASH leads to a higher magnetic field threshold than WWI. This
means that the zero-dimensional model presented in Sec. 3 does not predict substantial
runaway generation below the magnetic field indicated by the solid and dotted lines for
the chosen cooling time. Therefore one may draw the conclusion that there is no runaway
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Figure 3: Critical magnetic field for significant runaway generation as a function of TeV
for different electron densities. (left) JET-like parameters: q = 1.5, R = 3, I0 = 2 MA,
ν0t0 = 10 (for CRASH), Lr = 0.2 m, jr = 2 MA/m2 (for WWI). (right) ITER-like
parameters: q = 1.5, R = 6, I0 = 15 MA (for CRASH), Lr = 0.3 m, jr = 1.5 MA/m2(for
WWI).

beam for the WWI to stop. However, if the cooling time is shorter, CRASH leads to a
lower magnetic field threshold, and below t0 ' 1 ms (for q = 1.5, R = 3, I0 = 2 MA,
Te0 = 3 keV, n19 = 3, BT = 2), S is always positive. Note that CRASH depends
approximately linearly on the electron density, and the probability for runaway production
is higher for low density. In ITER-like disruptions, the current quench time is predicted
to be t0 = 1− 10 ms [12], so that ν0t0 < 5 and runaways are always likely to be produced
due to the hot-tail generation, although the beam formation will probably be stopped by
WWI below 2 T.

We have demonstrated that the WWI is an effective loss mechanism for secondary run-
aways. However, there are several other processes that can limit the runaway energy or
cause loss of runaways, such as synchrotron radiation [11], Bremsstrahlung [13], uncon-
fined drift orbit losses [14], resonance between gyro-motion and magnetic field ripple [15],
and radial diffusion due to magnetic field fluctuations [16]. Since these mechanisms are
not considered in this work, the results presented here are expected to give a lower limit
of the magnetic field threshold for runaway production.

5. Conclusions

For a given temperature, density and runaway fraction, if the magnetic field is below
a critical value, the whistler wave can be destabilized by relativistic secondary runaway
electrons. This mechanism offers a possible explanation for the magnetic field threshold for
runaway generation observed in tokamak disruptions. Lower runaway fractions are needed
for destabilization in plasmas with high temperature, since then the collisional damping
is weaker. The convective damping due to the localization of the runaway beam can be of
the same order of magnitude as the collisional damping for high temperature and strong
magnetic field. The convective damping is sensitive to the radius of the runaway beam
and the fraction of runaways in the plasma nr/ne, and these depend on the other plasma
parameters, for instance the final temperature and the cooling time. Therefore, runaway
production and suppression by WWI is a dynamical process, in which the runaways trigger
the WWI. The consequent scattering affects the strength and width of the runaway beam,
which in turn affects the damping of the WWI. It is difficult to predict exactly where the
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threshold in B might be without self-consistent simulations of the runaway distribution
function and electric field evolution, that could be achieved for instance by the Arena

code [17] coupled to an evaluation of the instability growth rate.

The magnetic field dependence of the runaway production has been studied by consid-
ering the coupled dynamics of the runaway generation and evolution of plasma current,
including the hot-tail generation of runaways. This leads to an analytical criterion for
runaway avalanche (CRASH) that can be used to estimate if there will be a substantial
runaway generation or not. CRASH can be shown to lead to a magnetic field threshold
unless hot-tail generation dominates. However, in rapidly cooling plasmas, where hot-tail
generation gives rise to a substantial runaway population, the whistler waves can stop the
runaway formation at a certain magnetic field unless the post-disruption temperature is
too low. If the post-disruption temperature is very low then whistler waves are stable and
the runaway beam develops unless its growth is limited by physical processes not taken
into account in this paper.
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