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Abstrat

The mirowave plasma heating has a strong in�uene on ollisional transport,

experimentally observed both in stellarators and tokamaks. The estimate of the in-

terplay between heating and ollisional transport implies solving a 5D kineti equa-

tion. We deal with this problem using a reently developed ode (ISDEP: Integrator

of Stohasti Di�erential Equations for Plasmas) in a tokamak with ripple as a test

devie, introduing the heating e�ets and a non-linear omputation of the time-

dependent plasma temperature pro�le. The in�uene of heating on the relevant

transport parameters, on plasma rotation and on the veloity distribution funtion

is studied.

1 Introdution

Transport and heating are usually desribed as separated proesses. The former is us-

tomarily solved by �uid equations and the latter, whih is onsidered as a soure term of

the transport set of equations, is alulated in the framework of kineti theory. However,

there exist several phenomena that show that transport is modi�ed by the heating e�ets

(see e.g. [1, 2℄), due to the interplay between mirowave plasma heating and transport,

and must be estimated solving the 5D kineti equation (3D in spae and 2D in momentum

spae).

In this work we solve simultaneously the ion transport and heating in the non-linear

regime, taking advantage of the equivalene between the (linear) Fokker Plank (FP) and

Langevin equations [3℄. As it is well-known, the FP equation is a olletive desription

of the system, i.e. an equation for the distribution funtion in phase spae f(t, x). An
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equivalent form is desribing the system with a Langevin equation, whih is a Stohasti

Di�erential Equation (SDE) for a single partile, where the variation of xi, the phase

spae oordinate, depends on a deterministi term, proportional to dt, and on a random

term dW i that desribes a Wiener proess [3℄.

We use ISDEP, a Monte Carlo ode that alulates the ion kineti transport by following

the guiding entre orbits in the presene of eletri �eld, inluding ion-ion [4℄ and ion-

eletron ollisions [5℄. We introdue in the equations a new term that estimates the

mirosopi quasi-linear wave-partile interation and was �rstly written in Langevin form

in [6℄. As we deal with ion transport, the heating method that we will onsider is diret Ion

Cylotron Resonane Heating (ICRH), in the range of seond harmoni of ion ylotron

resonane frequeny, whih is based in launhing resonant eletromagneti waves from

the edge of the on�ned plasma. In our ase, the randomness represented by the Wiener

proesses of the interation is related to the ollisions with the bakground plasma and

with the random relative phase between partiles gyromotion and waves. In this work,

we do not introdue any kind of turbulent transport yet. The wave-partile interation is

formally the same as in the ECRH ase, i.e., it an be onsidered as a resonant di�usion in

momentum spae. We will inlude the nonlinear evolution of the bakground temperature

using a self onsistent method, updating the temperature at eah step.

We hoose a tokamak devie with ripple instead of a omplex 3D devie, sine we are inter-

ested in studying the in�uene of the heating on transport rather than on the on�nement

properties of a given magneti on�guration.

2 Modeling of ollisional transport and heating in a 3D

tokamak.

2.1 The tokamak model

In our test devie, the plasma is a irular torus with major radius R0 = 1 m and

minor radius a = 0.2 m. The main magneti �eld (B0 = 1 T) as well as a small ripple,

(∼ 0.01 B0) is reated by 32 toroidal oils. The expression for the rippled magneti �eld is

obtained from [7℄. The ripple does not modify the toroidal magneti �ux in an appreiable

way (∼ 0.01%, estimated by numerial integration), so we an take the usual expression

ρ = r/a. ICH mirowaves are launhed by two antennae loated in opposite angles of the

torus. We plot the shape of the main pro�les in Fig. 1.

2.2 The Langevin Equations for the system

The dynamis of the test partiles is given by a set of Langevin equations. This inludes

several physial features and approximations. We study the evolution of the guiding

enter position, the veloity square and the pith: xi = (~rgc, v
2, λ), λ = v||/v. We

also onsider Coulombian ollisions with the bakground using the Boozer-Kuo Petravi

ollision operator.

The quasilinear wave-partile interation used in this work is a resonant proess in phase



3 TH/P3-18

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

-1 -0.5  0  0.5  1

ρ

Φ [1000 V]
-dΦ/dρ [1000 V]

T [1000 eV]
n [1013 cm-3]

Bp [T]
BT [T]

Figure 1: 1D pro�les: eletrostati potential (Φ) and its derivative, proportional to the

eletri �eld (dΦ/dρ), temperature (T ), density (n) and poloidal (Bp) and toroidal (BT )

magneti �elds. In this piture, the values with ρ < 0 orrespond the high magneti �eld

side of the devie while ρ > 0 refers to the low �eld side. All the pro�les exept BT are

symmetri in the poloidal angle.

spae. The resonant ondition is satis�ed with very small probability, but the in�uene

on (v2, λ) is very strong. We take a Gaussian deposition pro�le entered at the magneti

axis. As we will see, the �nal result is a global inrease of the energy.

Shematially, the equations we are solving are:

d~rgc = ~v gc(x) dt, (1)

dv2 =
(

F gc

v2 (x) + F coll
v2 (x) + F ICH

v2 (x)
)

dt

+ Gv2(x) ◦ dW v2

+ GvA(x) ◦ dWA + GvB(x) ◦ dWB , (2)

dλ =
(

F gc
λ (x) + F coll

λ (x) + F ICH
λ (x)

)

dt

+Gλ(x) ◦ dW λ + GλA(x) ◦ dWA + GλB(x) ◦ dWB. (3)

The Wiener proess is an independent inrement stohasti proess (Gaussian distributed)

suh that:

dW j(0) = 0, 〈dW j(t)〉 = 0, 〈dW j(t)dW k(t)〉 = δjkdt. (4)

This proess introdues di�usion phenomena in the system evolution. Using Eqs. (1),

(2) and (3) we an follow partile trajetories in the on�ned plasma, a�eted by eletro-

magneti �elds using the guiding entre approximation: ~v gc, F gc

v2 and F gc
λ (refs. [8, 9, 10℄)

and ollisions with other partiles via the Boozer operator: F coll
v , F coll

λ Gv2 and Gλ, (refs.

[11, 12℄). The funtions F ICH
v2 , F ICH

λ , GvA, GvB, GλA and GλB an be found in [6℄, al-

though some misprints have been orreted. The symbol �◦� indiates that we are using

Stratonovih algebra for the SDE system [3℄.

The Monte Carlo method is used to integrate a large number of independent trajetories

and alulate the main on�nement properties as the average energy, partile and heat

�uxes, on�nement time, et. One of the main advantages of following independent

trajetories is that the simulations sale perfetly in massive parallel lusters. In fat, all

the alulations presented in this work have been done using grid omputing tehniques,

see e.g. [13℄.
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2.3 Introdution of non linear e�ets

Linearizing the Boltzmann equation is equivalent to study the test partiles keeping �xed

the bakground plasma. This makes impossible the study of heating e�ets during plasma

evolution beause fast ions will transfer their energy to the bakground, and no temper-

ature rising will be observed. To overome this limitation while keeping the bene�ts of

the equivalene between the FP and the Langevin approah, we allow time dependent

temperature pro�les: T (ρ, t), whih we shall �x self-onsistently by identifying the time

evolution of the temperature of the test partiles with that of the �eld partiles [5℄. Note

that time dependent pro�les are allowed in a linear FP equation, the iterative method is

the key point to introdue non linearities, as will be explained below. In this work we

keep onstant the bakground density, assuming that the soures are able to supplement

the partile losses.

We use as temperature pro�le the average kineti energy in an interval of ∆ρ = 0.1
entered in ρ at a time t: v2(ρ, t). Let qi be the quotient of the average kineti energy in

the i-th iteration with ICH and the energy without ICH:

qi(ρ, t) =
v2

i (ρ, t)

v2(ρ, t)
. (5)

Then, in the iteration i + 1 we take as temperature the initial pro�le multiplied by qi:

Ti+1(ρ, t) = T0(ρ) qi(ρ, t) . (6)

We stop iterating when Ti+1(ρ, t) = Ti(ρ, t) within errors, whih is our self-onsistent

pro�le.

3 Numerial results

We use a Kloeden-Piersen algorithm [3℄ for solving our SDE system. It is similar to a

seond order Runge Kutta method for a given SDE for X(t):

dX i = F i(X, t)dt + Gi
j(X, t) ◦ dW j, Stratonovich SDE (7)

X i
n+1 = X i

n +
δ

2

(

F i(Xn) + F i(Xp)
)

+
1

2

(

Gi
j(Xn) + Gi

j(Xp)
)

∆W j, (8)

X i
p = X i

n + F i(Xn)δ + Gi
k(Xn) ∆W k. (9)

This method onverges weakly (for the averages, see [3℄) with order δ2 (δ = tn+1 − tn.) for

a 1D multipliative noise. Unfortunately, we are dealing with 4D multipliative noises and

we �nd onvergene up to order δ (speially in the ICH ase). Performing onvergene

tests, we have to hoose δ = 2×10−9 s in the ICH ase, so the systemati errors are always

smaller than the statistial errors in the measurements in the �nal time (t = 0.05 s). When

heating is not inluded, δ = 5 × 10−8 s is enough.

We stop iterating when we reah steady state and, therefore, we �nd a self-onsistent

pro�le in v2 (Fig. 3). The main results of this work are the omparison of �uxes, veloities,

distribution funtions and other relevant quantities between simulations with and without

heating. In Fig. 2 we show the time evolution of several plasma features in both ases:
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Figure 2: Evolution (with and without ICH) of the persistene P (upper left), average

e�etive radius, ρ (upper right), total energy ET (lower left) and kineti energy (lower

right) in units of mc2/2. Con�nement times are τ = 0.0387(8) s and τICH = 0.0212(9) s.
We an observe the heating e�et for t > 10−3 s.

persistene P (de�ned as the fration of surviving partiles), e�etive radius and kineti

and total energy. It an be seen that the persistene of partiles falls faster in the ase of

ICH. This is not surprising sine the average energy is inreased and so does the outward

�ux. We alulate the on�nement times �tting P(t) to e−t/τ . The average radius also

inreases in the ase of ICH for times larger than the typial ollision one, showing again

the inrease of the outward partile �ux. The average energy rises for times larger than

10−3 s, showing the obvious e�et of plasma heating and the typial time sale in whih

the power absorption is relevant. The hange of the average squared veloity is, not

surprisingly, very similar to the energy one.

Also we alulate the toroidal and poloidal veloity pro�les (Fig. 3). We see that the

poloidal veloity does not hange beause it depends mostly on the ~E × ~B drift, and it is

not modi�ed in the system. On the other hand, vφ is strongly in�uened by ICH, beause

if v2 grows while vθ is onstant, then vφ inreases. This inrement, foused on ρ ≃ 0,
is propagated radially via transport proesses.The evolution of the partile �ux pro�le

is plotted in Fig. 4, whih shows that this is always larger in the presene of heating,

espeially for t > 10−3 s, whih is the typial time sale for plasma heating to be relevant.

The steady state �ux is monotoni, as orresponds to the absene of soures or sinks. The

heat �ux pro�le evolution (Fig. 5) is again monotoni in steady state (t = 5 · 10−2 s), but

the gradient in the entre of the devie is muh larger in the ase of ICH than in the one

without heating, sine the heat soure is loated lose to ρ = 0.

We ompute the probability distribution funtion (v2 · f(v, φ)), in terms of v and φ (Fig.

6). We �nd that with a small ripple (1%) f(v, φ) does not depend on φ in any ase,

whih implies that the parallel transport is able to overome the loal heating produed

by the antennae as well as the ripple e�ets. It is lear that the e�et of heating tends to

make the distribution funtion wider , rising its tail and reating an important number of
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Figure 3: Iterations of the v2 pro�le (upper, left), Binder umulan (upper, right), poloidal

veloity (lower, left) and toroidal veloity (lower, right), measured in t = 5 · 10−2 s.
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Figure 5: Heat �uxes.

suprathermal ions. The Binder umulant, de�ned as κ := 〈v4〉/〈v2〉2, measures deviations

from the Maxwellian distribution (Fig 3). In the plasma without ICH, the umulant is

equal to 5/3 at every time, exept in the outer plasma radius where an inrease of fast

partiles due to the transport is observed. The ICH plasmas show lear e�ets of heating

with a umulant larger than the Maxwellian value, with a loal maximum in the entre of

the devie and an inrease lose to the plasma edge due to the e�et of fast ion transport.

4 Conlusions

We have estimated for the �rst time the ombined e�ets of ion ollisional transport and

heating outside the frame of the linear approximation. To do that, we have developed

a nonlinear kineti method based on Langevin equations for transport and quasi linear

heating. We modify the bakground temperature with an iterative method, allowing a

real inrement of the partile energy. This method makes possible the numerial solu-

tion, for any geometry and wave, of the ollisional transport in phase spae. The only

approximations are onsidering ollisional transport in a frozen eletrostati potential and

assuming that wave-partile interation is well desribed by quasi-linear theory. We have

partiularized our model to the geometry of a tokamak with ripple, avoiding for the mo-

ment the e�ets of more omplex geometries to onentrate ourselves in the heat and

transport interplay. This omputer ode an be easily adapted to another geometries and

plasma pro�les, like stellarator geometries or the ITER one.
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Figure 6: Veloity probability distribution funtions, as a funtion of the veloity and the

toroidal angle without (left) and with ICH (right).
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