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Abstract. It was found recently with the use of the ballooning formalism that the toroidal asymmetry
of the stellarator magnetic configuration can significantly change the structure of Torodicity-induced
Alfvén Eigenmodes (TAE) with high toroidal mode numbers (n), producing singular (stepwise) wave
functions [Yakovenko, Yu.V., et al., Energetic Particles in Magnetic Confinement Systems (Proc. 10th
IAEA Tech. Mtg, Kloster Seeon, 2007), IAEA, Vienna (2008), CD-ROM file Iv.03]. In this work, the
effect of the toroidal asymmetry on TAE-modes with finite n in stellarators is studied with the code
BOA-en. A sequence of TAE-modes with almost the same frequency and localization but with different n

is considered. The asymmetry consecutively couples the modes in the sequence. When the magnitude of
the asymmetry is sufficiently large, the modes are strongly mixed (that is, the contributions of separate
TAE-modes to the resulting wave functions are comparable). The mixed wave functions are strongly
anharmonic in the toroidal direction, having a tendency to localization of the wave energy along certain
field lines. They cannot be characterized by a certain number n; their periodicity in the toroidal direction
is determined by the periodicity of the magnetic configuration harmonic that couples the individual TAE-
modes. Strongly anharmonic TAE-modes can appear most easily in stellarators with an even number of
the field periods (N). In particular, one can expect that the TAE-modes that will appear near several
rational flux surfaces in the 2-period stellarator QPS may turn out to be strongly anharmonic. In the
devices with odd N , coupling between TAE-modes with different n is weaker, and Ellipticity-induced
Alfvén Eigenmodes (EAE) may become strongly anharmonic more easily than the TAE-modes.

1. Introduction

Instabilities of Alfvén eigenmodes (AE) are often observed in tokamaks and stellarators [1–
3]. In spite of considerable similarities between AEs in tokamaks and AEs in stellarators,
the lack of the axial symmetry in the stellarators results in important differences between
them. First of all, new gaps appear in the stellarator Alfvén continua, with new types of
eigenmodes (the so-called mirror-induced and helicity-induced Alfvén eigenmodes, MAE
and HAE) residing in these gaps [4–6]. These eigenmodes are typically trapped in certain
sectors of the plasma cross section (“waveguides”) due to the interference of magnetic con-
figuration Fourier harmonics with similar period lengths along the field lines [7] (it seems
possible that this interference can explain some features observed in earlier numerical
simulations [8]). The resonances responsible for the destabilization of AEs in stellarators
are also more various than those in tokamaks [9].

It was found recently [10] with the use of the ballooning formalism that even weak toroidal
asymmetry can significantly change the properties of the Torodicity-induced Alfvén Eigen-
modes (TAE), which are often observed in tokamaks and stellarators. The reason for this



lies in the fact that the TAE modes are infinitely degenerate in the local approxima-
tion: For each TAE mode, there is an infinite set of modes with approximately the same
frequency and location. The mode numbers of these modes satisfy the relationship
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where ι∗ is the rotational transform at the point near which the modes are localized, and
the poloidal and toroidal mode numbers of the two main Fourier harmonics of the j-th
mode are (m,n) = (mj − 1, nj) and (m,n) = (mj, nj), respectively. Toroidal asymmetry
couples these modes, producing a narrow band of continuous spectrum. The corresponding
solutions tend to become localized along field lines. Thus, the asymmetry affects the
structure of the TAE modes in the same fashion as it affects that of the ballooning modes
[11]. Then a question arises: to what extent this result obtained in the framework of the
ballooning formalism is valid for modes with low n? The aim of this work is to answer
this question by studying numerically the effect of the asymmetry on TAE-modes with
finite n.

2. Model of TAE modes

We consider numerically a sequence of TAE modes with the mode numbers satisfying
Eq. (1) in a low-shear configuration similar to that of Wendelstein-line stellarators. It
is known that in the case of low shear, ŝ ¿ εt, where ŝ is the magnetic shear and εt

is the relative magnitude of the toroidal harmonic of the magnetic field, a TAE mode
in a tokamak essentially consists of two Fourier harmonics, (m,n) = (mj − 1, nj) and
(mj, nj), toroidal coupling with harmonics with other values of m being negligible [12].
This fact simplifies our consideration, giving us a possibility to consider only two Fourier
harmonics for each n; however, we believe that our main conclusions are valid for high-
shear configurations, too. When the axial symmetry is broken, the modes become coupled
via toroidally asymmetric Fourier harmonics of equilibrium quantities (the flux surface
shape and the magnetic field). The equilibrium harmonic ∝ exp(iµθ − iνNφ) (here N
is the number of the field periods, θ and φ are the poloidal and toroidal coordinates,
respectively) can couple harmonics of two modes satisfying Eq. (1) provided that

νN

µ + s
=

2nj

2mj − 1
= ι∗ (2)

with s = −1, 0 or 1. When N is even, coupling is achieved via harmonics with ν = 1, which
are typically much larger than the harmonics with larger ν; when N is odd, coupling is
possible only via harmonics with even ν, i.e., ν = 2 and larger. To achieve a most
pronounced effect of the toroidal asymmetry, we took N = 4, like in the conceptual 4-
period Helias reactor HSR4/18 [13], and the rotational transform ι that passes through
the value of 4/5, like in the low-ι configuration of Wendelstein 7-X (W7-X) [14]. In
this configuration, there is a sequence of TAE modes with the mode numbers (m,n) =
(2, 2)&(3, 2), (7, 6)&(8, 6), (12, 10)&(13, 10), etc., which are consecutively coupled, chiefly
via the metric tensor harmonic ∝ cos(µθ − νNφ) with (µ, ν) = (4, 1). This harmonic
(which characterizes the helical quadrangularity of the plasma cross section) proves to be
rather large in realistic Wendelstein configurations.



To describe the modes, we use the following equation system derived by means of Fourier
decomposition from the equation of Alfvén oscillations in low-pressure plasmas [5]:
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Here Φ1, Φ2, Φ3, . . . is as a sequence of Fourier harmonics of the wave potential, r is the
radial coordinate defined as r = (2ψ/B0)

1/2, ψ is the toroidal magnetic flux, λ = ω2R2/v2
A,

ω is the mode frequency, vA is the average Alfvén velocity at the magnetic axis, R is the
major radius of the plasma, kl = mlι−nl is the normalized longitudinal wave number. The
mode numbers (ml, nl) of the harmonic Φl are given by (m2p−1, n2p−1) = (5p− 3, 4p− 2),
(m2p, n2p) = (5p − 2, 4p − 2). Thus, each pair of the 2p − 1-th and 2p-th harmonics of
the sequence can form TAE modes near the point r∗ at which ι(r∗) = ι∗ = 4/5 (i.e.,
k2p−1 = −k2p), whereas (m2p+1, n2p+1)− (m2p, n2p) = (4, N). The operators coupling the
harmonics are given by
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for l = 2p− 1, j = 2p or l = 2p, j = 2p− 1 and by
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for l = 2p + 1, j = 2p or l = 2p, j = 2p + 1, where Djl = mjnl − mlnj, the coupling
parameters εg(µ,ν) and εc(µ,ν) characterize the normalized Fourier coefficients of the metric
tensor component gψψ = |∇ψ|2 and the magnetic field:

hg,c = 1 +
1

2

∞∑
µ,ν=−∞

εg,c(µ,ν) exp(iµθ − iνNφ), (6)

hg ≡ gψψ/〈gψψ〉, hc ≡ hg〈B〉4/B4. When writing these equations, we assumed for the
sake of simplicity that the harmonics are coupled only due to the angular dependence
of gψψ and B and neglected the coupling due to other components of the metric tensor.
In addition, we assumed that the plasma density is homogeneous to avoid as much as
possible the difficulties associated with the consideration of modes that lie within the
Alfvén continuum.

3. Numerical modelling

The new code BOA-en has been developed to solve Eqs. (3)–(5). This code is based on
the code BOA-e [15], but it is more flexible and enables one to work with an arbitrary
number of mode harmonics. For our calculations we took parabolic ι-profiles passing
through ι = ι∗ at r = r∗ = 0.6a: ι = ι∗ + α[0.36 − (r/a)2], where a is the minor
radius of the plasma, α is a parameter determining the magnitude of the magnetic shear
(which, in turn, determines the mode width). We took this parameter in the interval of
0.08 ≤ α ≤ 0.25. The coupling parameter εg(4,1) was taken in the form εg(4,1) = c(r/a)2

with 0 ≤ c ≤ 0.65, so that εg(4,1)(r = 0.6a) ≤ 0.23, which approximately corresponds to
the magnitude of this parameter in W7-X. The coupling parameters εg(1,0) and εc(1,0) were
constant (for the same reason as we assumed the plasma density to be constant), which



does not seem important. Namely, the radial dependences of εg(1,0) and εc(1,0) were the
same as in W7-X; their magnitude, however, was larger and corresponded approximately
to a stellarator with the aspect ratio of HSR4/18 and β ∼ 10%.

When the (4, 1)-harmonic (the toroidal asymmetry) is switched off, the code finds a set of
TAE-modes harmonic in φ (i.e., they depend on φ as exp(inφ)). Since the shear is small,
the code finds a set of multiple modes for each n (see Fig. 1, where results of calculations for
α = 0.08 and l = 3, . . . , 8 are presented). The frequencies of the modes with different n are
close (at least, those of the modes that lie sufficiently far from the gap boundaries); still,
they are different due to non-locality effects. The shapes of the eigenfunctions with close
frequencies look similar, their width decreasing with n. As the coupling (4, 1)-harmonic of
the metric tensor appears, the eigenfunctions become anharmonic in φ (i.e., their Fourier
spectrum contains satellites with different numbers n), which is accompanied by “repul-
sion” of the frequencies of similar modes. When the increase of the distance between the
mode frequencies exceeds their initial distance (which is the case for realistic values of the
(4, 1)-harmonic), the eigenfunctions undergo a qualitative change (even though this change
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FIG. 1. The Alfvén continuum and the mode
spectrum of TAE-modes with n = 6, n = 10,
and n = 14 in the case of toroidal symmetry for
α = 0.08. Black dots, the continuum; red dots,
the spectrum of modes with n = 6; blue dots,
with n = 10; magenta dots, with n = 14.

takes place gradually): The contributions
of harmonics with different n becomes com-
parable (see Fig. 2). In fact, such modes
can no longer be characterized by a certain
toroidal mode number n. We will refer to
such eigenfunctions as strongly mixed or
strongly anharmonic. The dependence of
the wave function on φ at the outer cir-
cumference of the plasma (θ = 0) is shown
in Fig. 3 for two eigenmodes at three radial
locations. One can observe that the inter-
ference of modes with the toroidal num-
bers 6, 10, and 14 has produced wave func-
tions that have the period equal to π in the
toroidal direction and, at first glance, look
like modes with the dominant harmonic
n = 2. However, this impression is false;
harmonics with n = 2 were not included
to this calculation. The wave functions are
almost stepwise in φ; as the relative phases
of the harmonics weakly change along the
magnetic field lines, this means that the
electric field of the mode is localized at cer-
tain field lines.

4. Discussion

Our calculations has shown that toroidal asymmetry of the configuration can completely
change the structure of TAE-modes. They can no longer be characterized by a definite
toroidal mode number n, being a mixture of modes with different n. It follows that
from Eq. (2) that the period of the mixed wave functions in the toroidal direction equals
4π/(νN). The shapes of the wave functions is strongly anharmonic and has the tendency



0

40

80

120

F
re

qu
en

cy
, a

.u
.

(a)

0 0.2 0.4 0.6 0.8 1
r/a

-0.2

-0.1

0

0.1

0.2

Φ
l

(b)

FIG. 2. Results of calculations for harmonics with l = 3, . . . , 8 in the presence of the (4, 1)-
harmonic. (a), comparison of the frequency spectrum in the axisymmetric case (c = 0, blue
dots) and with a non-zero (4, 1)-harmonic (c = 0.65, red dots). (b), the radial structure of
harmonics of the eigenmode with the frequency of 89.7 a.u.; black line corresponds to l = 3,
(m,n) = (7, 6); blue, l = 4, (m,n) = (8, 6); cyan, l = 5, (m,n) = (12, 10); green, l = 6,
(m,n) = (13, 10); red, l = 7, (m,n) = (17, 14); magenta, l = 8, (m,n) = (18, 14).
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FIG. 3. The toroidal structure of the eigenmodes at θ = 0. Left panel, the frequency of 89.7
a.u.; right panel, the frequency of 92.2 a.u.



to become stepwise. The Ellipticity-induced Alfvén Eigenmodes (EAE) can also be cou-
pled by the toroidal asymmetry and form strongly anharmonic structures. Let us consider
a sequence of EAE-modes, each consisting of the harmonics with the numbers (mj, nj)
and (mj − 2, nj). Similarly to Eq. (2), one write the following condition that these modes
can be coupled by the configuration harmonic (µ, ν):

νN

µ + s
=

nj

mj − 1
= ι∗ (7)

with s = 0 or ±2. One can show that the anharmonic waves appearing due to mixing of
these harmonics have the toroidal period of 2π/(νN).

The fact that the behaviour of the mode wave function becomes stepwise due to the
toroidal asymmetry of the magnetic configuration agrees with analysis based on the bal-
looning formalism [10, 11]. The local theory [12] predicts that the frequencies of TAE-
modes localized at the same radius do not depend on n to main order. In agreement
with this, our calculations show that the frequencies of the TAE-modes of the considered
sequence quickly converge. At the same time, one can show the coupling intensity does
not decrease with n. This gives us grounds to conclude that all further modes in the se-
quence will be also mixed to anharmonic state. Therefore, one can expect that including
more toroidal harmonics into our calculations would make the stepwise structure of the
wave functions even more pronounced. This means that in practice the shape of the wave
functions is determined to a large extent by non-ideal factors; one can expect that these
factors smoothen the stepwise functions, affecting primarily high-n harmonics.

The strong anharmonicity of TAE-modes should manifest itself especially easily in stel-
larators with even N . In this case, according to Eq. (2), TAE-modes with different n can
be coupled via equilibrium harmonics with ν = 1, which are typically much larger than
the harmonics with higher ν. In particular, one can suppose that strong toroidal anhar-
monicity of TAE- and EAE-modes may be observed in the 2-period stellarator QPS [16].
Depending on the plasma current and pressure, ι in QPS varies between 0.17 and 0.37.
Equation (2) shows the TAE-mode located at ι∗ = 2/7 and consisting of the harmonics
with (m,n) = (3, 1) and (4, 1)) can become anharmonic due to the configuration har-
monic with (µ, ν) = (6, 1). The same can happen with the TAE-mode located at ι∗ = 2/9
and consisting of the harmonics with (m,n) = (4, 1) and (5, 1)) due to the configuration
harmonic with (µ, ν) = (8, 1). Since the aspect ratio of the device is rather small, one
can expect that the (6, 1) harmonic of the cross section shape is not too weak to cause
coupling of TAE-modes with different n, although detailed calculations are required to
reach a definite conclusion. The EAE-mode located at ι = 1/3 and consisting of the
harmonics with (m,n) = (2, 1) and (4, 1)) can become strongly anharmonic due to the
cross section shape harmonic with (µ, ν) = (4, 1), which is certainly not weak.

Wendelstein 7-X has an odd number of periods, N = 5. In this case, according to Eq. (2),
coupling between TAE-modes is possible only via configuration harmonics with ν = 2 or
larger, which are rather weak in W7-X. However, EAE-modes with n = 5 can become
anharmonic due to configuration harmonics with ν = 1. Such eigenmodes can appear at
ι∗ = 5/6. This value of ι is within the planned range of ι in W7-X, although it is avoided
in all standard vacuum configurations [14].



5. Conclusions

Our calculations have shown that coupling of TAE modes having different n but located
in the vicinity of the same radial position, which takes place in stellarators due to toroidal
asymmetry of the magnetic configuration, can produce strongly anharmonic eigenmodes.
It should be emphasized that although the parameters of the stellarator configuration
considered here were chosen to facilitate the observation of coupling between TAE-modes,
this configuration does not seem unrealistic. The amplitudes of eigenmode harmonics with
different n are of the same order; therefore, one cannot attribute a definite toroidal mode
number to these eigenmodes. The period of the anharmonic eigenmodes in φ is determined
by the periodicity of the configuration harmonic causing the coupling; it equals 4π/(νN)
for the TAE-modes and 2π/(νN) for the EAE-modes. The toroidal structure of the
wave functions of the strongly anharmonic eigenmodes exhibits a tendency to stepwise
behaviour, which agrees with previous results obtained in the framework of the ballooning
formalism. This means that the shape of the strongly anharmonic wave functions is
determined by non-ideal factors (finite ion Larmor radius effects, resistivity etc.). The
amplitude of a strongly anharmonic eigenmode strongly depends on φ, which might be
of importance for magnetic diagnostics (the Mirnov coils positioned in different toroidal
positions could show different mode amplitudes).

Strongly anharmonic TAE-modes can appear most easily in devices with even number
of periods. When N is even, coupling of TAE-modes can occur via the configuration
harmonics with ν = 1, which are typically larger than the harmonics with larger ν. In
particular, TAE-modes and EAE-modes with low mode numbers in QPS (where N = 2)
may turn out to be anharmonic. EAE-modes can be coupled by configuration harmonics
with ν = 1 even when N is odd. For example, the EAE-modes arising near ι = 5/6 may
prove to be anharmonic (if this value of ι appears in W7-X).
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