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Abstract. Equations describing eigenmodes with the frequencies of the order of the geodesic acoustic
frequency and the electron/ion diamagnetic frequency in toroidal plasmas are derived and analyzed, a
code BOAS solving them is developed. It is shown that there exist drift-sound eigenmodes and new
drift-Alfvén eigenmodes. This is done by means of an analytical consideration and numerical modelling
of particular discharges in the stellarator Wendelstein 7-AS. It is shown experimentally that the modes
rotating in different directions can be destabilized simultaneously, which agrees with theory predictions.

1. Introduction

Recently, instabilities with frequencies below that of the Toroidicity-induced Alfvén Eigen-
modes (TAE) attracted considerable attention in fusion research. These Low Frequency
(LF) instabilities occur in all types of toroidal plasma systems. In particular, Re-
versed Shear Alfvén Eigenmodes (RSAE) or Alfvén Cascades (AC) were observed in JET
and extensively studied theoretically [1, 2]; Non-conventional Global Alfvén Eigenmodes
(NGAE) were predicted to exist in stellarators and seem to be observed in Wendelstein
7-AS (W7-AS) [3, 4]; Beta-induced Alfvén Acoustic Eigenmodes (BAAE) were observed
in the NSTX spherical torus [5], the Sound Cascades (SC) were observed in ASDEX-
Upgrade [6]. Despite efforts of many theorists, a number of features of experimentally
observed LF instabilities remain a mystery. In particular, it is not clear why the BAAE
modes, which are actually sound waves, are not strongly damped but easily destabilized
in isothermic plasma; why a LF instability observed in DIII-D manifests itself even at any
beam power [7]. Furthermore, there are different interpretations of Beta-induced Alfvén
Eigenmodes (BAE) observed in DIII-D many years ago [8]. Both the BAAE in NSTX
and the mentioned instabilities in DIII-D have the frequencies below the frequency of the
Geodesic Acoustic Mode (GAM), ωG [9]. The modes with the frequencies below/about
ωG, which we may refer to as sub-GAM modes, were observed also in W7-AS. The nature
of some of them remains unclear. The purpose of this work is to contribute to under-
standing the physics of sub-GAM instabilities and to apply a new theory to modelling
experiments on W7-AS [10].

Our basic idea is that plasma compressibility and finite diamagnetic frequencies of the
electrons and ions, ω∗e and ω∗i, play an important role in LF instabilities. Taking them
into account may immediately explain why sound perturbations are weakly damped even
in isothermic plasmas: due to finite ω∗ the frequency of sound perturbations does not go
to zero when k‖ → 0 (k‖ is the longitudinal wave number), which implies that ω/k‖ À vth,i

(ω is the wave frequency, vth,i is the ion thermal velocity) when k‖ is sufficiently small.
Moreover, finite ω∗ breaks the symmetry of the dispersion relation with respect to the
sign of ω, which, in particular, may lead to the existence of new modes. It follows from



the foregoing that the ideal MHD approximation may be insufficient for the description
of LF modes. Note that this was realized long time ago; nevertheless, typically one
usually uses ideal MHD to describe destabilized eigenmodes. On the other hand, studies
beyond ideal MHD showed new interesting results: Kinetic Ballooning Modes (KBM) and
Energetic Particle Modes (EPM) of drift type were predicted [11], and new features of
LF instabilities were revealed due to taking into account plasma compressibility and the
ion diamagnetic frequency on the same footing [12]. However, the mentioned results are
relevant only to Alfvén perturbations; another important class of perturbation — sound
perturbations — is not considered yet. Moreover, the mentioned Alfvén perturbations
are studied in the framework of ballooning formalism, which describes EPM and gap
modes localized at rational flux surfaces but cannot describe the modes with frequencies
close to extrema of Alfvén continuum away from the rational surfaces [like Global Alfvén
Eigenmodes (GAE), NGAE and RSAE] and requires additional efforts to calculate the
radial structure of the modes. This motivated us to derive new equations describing both
drift-Alfvén perturbations and drift-sound perturbations. A difficulty to be overcome in
this way is that the equations for perturbations of the drift-sound type do not contain
radial derivative terms and, thus, determine only continuum but not eigenmodes. We
assume that the problem can be resolved due to the magnetic field inhomogeneity, which
couples the drift-sound perturbations with the drift-Alfvénic perturbations.

2. Basic equations and the code BOAS

We proceed from the collisionless fluid equations derived in Refs. [13, 14], which take
into account the anisotropy of the plasma pressure and the gyroviscous cancellation [15].
We assume that vth,i ¿ ω/k‖ ¿ vth,e, where vth,e is the electron thermal velocity. In
this case the longitudinal thermal flux dominates the electron energy balance; therefore,
the electron temperature is flattened out along the field lines: B · ∇Te = 0 (with B the
magnetic field strength and Te the electron temperature), which implies that the electron
temperature remains isotropic in the perturbed state. In addition to this equation, we use
the equation of motion (without the inertia term) and the quasi-neutrality condition ne =
ni (where ne/i is the electron/ion density) to describe electrons. For the ion component,
we neglect the longitudinal thermal fluxes due to the condition ω/k‖ À vth,i (this implies
that there is no mechanism to maintain the pressure isotropy and, thus, the perturbed
ion pressure is strongly anisotropic). To eliminate fast magnetoacoustic waves from the
consideration, we take into account that the Alfvén waves and the sound waves weakly
disturb the total perpendicular pressure of the magnetic field and plasma. For low-β
plasmas, the plasma pressure can be neglected, which leads to the condition B̃‖ ≈ 0 (tilde
labels perturbations). Finally, we take the equilibrium magnetic field, B0, and perturbed
quantities, X̃, in the forms:
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where Φ is the perturbed scalar potential of the electromagnetic field, ζmn ≡ iω∇‖ṽ‖mn,
with ṽ‖ the longitudinal perturbed velocity of the ion component, τ = Ti/Te, Te/i is the
electron/ion temperature, kmn = (mι − n)/R is the longitudinal wave number, R is the
major radius of the torus, ι is the rotational transform, c2

ei = Te/Mi, Mi the ion mass,
ω∗i = mcp′i/(eiBnir) and ω∗e = mcTen

′
e/(eeBner), with pi the ion pressure, prime denotes

the radial derivative, νι is the fraction of the rotational transform produced by the plasma
current (νι = 1 in tokamaks, νι = 0 in currentless stellarators), δ0 & 1 characterizes the
plasma shape [4],
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In these equations, Φ describes Alfvénic perturbations, whereas ζ describes perturbations
of the sound type. The magnitudes Φ and ζ are coupled due to finite ε

(µν)
B . For simplicity,

the coupling terms were derived in assumptions of homogeneous plasma temperature and
high mode numbers; in addition, we took δ0(r) = const and νι(r) = const. Equation (4)
is written with taking into account that harmonics with high µ, ν weakly contribute to
ωG (see Ref. [4]); in addition, harmonics of B0 with µ > 1 are neglected (therefore, ωG is
somewhat underestimated).

In order to solve coupled drift-sound and drift-Alfvén equations, a numerical code BOAS
(Branches Of Alfvén and Sound modes) was developed. The code calculates both the
continuum and discrete modes and can allow for FLR effects.

3. Drift-sound and drift-Alfvén eigenmodes

Let us analyze these equations. First of all, we consider the continuum, assuming that
the coupling terms weakly disturb it. The continuum branches depend on the ratio of
ωG/ω∗i. A sketch of them for ωG > ω∗i is shown in Fig. 1. Note that we took ω > 0 for
the modes rotating in the ion diamagnetic direction and ω < 0 for the modes rotating
in the electron direction, in which case m < 0 and n < 0. We observe that there are
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FIG. 1. Sketch of drift-Alfvén (labeled “A”) and drift-sound (labeled “S”) continuum branches
for ωG > ω∗i > |ω∗e|. Notations: ωA = k‖vA, ωs = k‖cs, with cs the sound velocity. When
Te = Ti, only the parts of branches shown by bold lines are of interest because dotted lines lie in
the region where ω ∼ k‖vth,i, i.e., where the modes are strongly damped.

Alfvén branches with both ω > 0 and ω < 0, but when ω < ω∗i, the Alfvén frequencies
are positive. The sound continuum branch near which weakly damped modes are possible
is negative. Similar conclusions can be drawn when ωG < ω∗i and ωG < |ω∗e| despite
different behaviour of the continuum branches.

In order to see whether drift-sound modes exist in the framework of our model, we consider
the simplest case of µ = ν = 0. Then the drift-Alfvén and drift-sound continua are
decoupled; nevertheless, the equations determine the structure of drift-sound modes due
to finite ε

(00)
B . We write Eqs. (2), (3) for νι = 0 as follows:

Sζmn = p1Φ
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(6)
where the coefficients can be easily determined by comparing Eqs. (5), (6) with Eqs. (2),
(3). We consider Eqs. (5), (6) in the vicinity of an extremum of the drift-sound continuum.
Following an approach used in Ref. [16] to study well-localized Alfvén eigenmodes, we
obtain the following Schrödinger-type equation for µ = ν = 0:

d2Ψ

dx2
+ [E − U(x)]Ψ = 0, (7)

where Ψ =
√

AΦmn, x = (r − r0)/∆, r0 the radius where the continuum defined by
S(r0, ω) = 0 has an extremum, ∆2 = 2S/S ′′|r0 , the energy (E) and the potential (U(x))



are defined by
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where all the magnitudes are taken at the point r0. One can see that A < 0 (at least,
when ω2 < ω2

G or ω2 < k2
‖v

2
A), p2q2 > 0 and Sω ≡ ∂S/∂ω > 0 for ω < 0; S ′′Sω > 0 at the

maximum of the continuum and S ′′Sω < 0 at the minimum. Therefore, there is a potential
well at the maximum, and a hill at the minimum. The energy is typically negative (the
first term dominates in Eq. (8), and ∆2 > 0 for discrete modes). We conclude from
here that discrete drift-sound eigenmodes exist when the continuum has a maximum (for
ω < 0).

Drift-Alfvén eigenmodes can also be described by a Schrödinger-like equation. Neglecting
the mode coupling, we have:

d2Ψ

dr2
+ [E1 − U1(r)]Ψ = 0, (10)

where E1 = 0 and U1(r) = −E/∆2. A condition of the existence of discrete eigenmodes
(not necessary well localized) is U1(r) < 0 in some region, which provides the presence
of two “turning points”. Discrete eigenmodes exist even when U1(r) < 0 in the whole
plasma cross section provided that Ψ(a) = 0, with a the plasma radius [4].

4. Kinetic eigenmodes

Considering the case of µ 6= 0, we take into account effects of the finite ion Larmor radius
(FLR) by adding a fourth-derivative term, αrd4Φm+µ,n+νN/dr4, to the left-hand side of
Eq. (6), where α is proportional to square of the ion Larmor radius (see Ref. [17] for the
case of ω > ω∗). Eliminating ζ from Eqs. (5) and (6), we obtain the following equation
for drift-Alfvén and drift-sound eigenmodes:
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where F = A− p1q1/S, g = −km+µ,n+νN(rk′m+µ,n+νN)′− (q1p2/S)′. Note that in the ideal
limit case (α = 0) Eq. (11) possesses a continuous spectrum described by the equation
F = 0 (AS = p1q1). We approximate F (r) as F = Fω(ω − ω0)(1 + x2), where x =
(r − r0)/∆, ∆2 = 2Fω(ω − ω0)/F

′′, Fω and F ′′ are taken at a point (r0, ω0) where the
continuum has an extremum. Assuming the rest of coefficients to be constant, we perform
the Fourier transformation: Φm+µ,n+νN(x) =

∫
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where ḡ = 2g/F ′′. In the ideal case (α = 0), Eq. (7) with U given by Eq. (12) possesses
a discrete spectrum when ḡ > 1/4 [18]. The effect of the FLR term is determined by the



sign of F ′′. When F ′′ < 0 and α > 0, FLR produces new modes in the continuum of
the ideal equation (even when ḡ < 1/4 and ideal modes are absent); we refer to them as
Kinetic Drift-Alfvén Eigenmodes (KDAE) and Kinetic Drift-Sound Eigenmodes (KDSE).
In the contrary case, F ′′ > 0, FLR results in radiative damping of ideal modes. Typically,
KDSEs exist below the maximum of the continuum (because Fω < 0). In the case of
ωG > ω∗i, KDAEs exist below the maximum when either 0 < ω < ω∗i or ω < 0 and
|ω| > ωG; they exist above the minimum for ω > ωG (like kinetic GAEs [19]).

5. Low-frequency instabilities in W7-AS

An analysis of several different W7-AS discharges (#39029, #43348, #54022 and others)
confirmed the supposition based on Fig. 1 that the modes with lowest frequencies may
rotate in the direction of the electron diamagnetic velocity, in contrast to the modes with
higher frequencies. Figure 2 demonstrates this for the modes the discharge #39029. The
lowest frequency in most of the mentioned discharges were about 9 kHz, but 18 kHz in the
discharge #43348. On the other hand, the 16 kHz mode in the discharge #40173 rotated
in the ion diamagnetic direction. Therefore, one can suppose that drift-Alfvén modes were
destabilized in the latter discharge, whereas drift-sound modes were destabilized in the
former ones. A numerical modelling of LF instabilities in the W7-AS discharges #39029
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FIG. 2. Tomographical reconstruction of soft X-ray data in the W7-AS discharge #39029 (time
range 0.500 - 0.501 s). The high-frequency mode rotates in the ion diamagnetic direction,
whereas the low-frequency mode rotates in the electron diamagnetic direction.

and #40173 was carried out. Earlier these discharges were analyzed in Refs. [4, 20],
where some of the observed modes were identified as GAE and NGAE modes. However,
theory of the mentioned works failed to explain the existence of the modes with the lowest
frequencies (9 kHz in the discharge #39029 and 16 kHz in the discharge #40173). Now
we can suggest an explanation: The code BOAS finds new modes. One of them, in the
discharge #39029, is a drift-sound mode (m = −5, n = −2), see Fig. 3; the existence
condition of KDSE modes is satisfied in this case. Thus, the observed mode may be either
“ideal” or kinetic mode. Another one, in the discharge #40173, is a drift-Alfvén mode,
which appears near the lowest branch with ω > 0 in Fig. 1. The found modes satisfy the
condition vth,i ¿ ω/k‖ ¿ vth,e. They can be destabilized by injected beam ions through
the resonance ω = (km+µ,n+νN± ι/R)vres

‖ due to the velocity anisotropy. A solution of this
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FIG. 3. Modelling of the 9-kHz instability in the W7-AS discharge #39029: (a) drift-sound con-
tinuum branch (in red), ωG, and ω∗e; (b) the ζ5,2(r) component of the KDSE-mode. The Φ6,2(r)
component of KDSE (not shown here) is considerably wider but has much smaller amplitude.

equation is vres
‖ /v0 = 0.63 (v0 is the velocity of injected ions) in the discharge #39029,

which means that the drive can exceed the damping when 0.63 < χ < 0.77, where
χ the pitch angle of fast ions (this condition is obtained for the distribution function
fb ∝ δ(χ− χ0)/v

3 by using the result of Ref. [21]). In addition, spatial inhomogeneity of
the electrons may contribute to the destabilization of the modes with ω < 0.
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FIG. 4. Modelling of instabilities in the W7-AS discharge #40173: (a) drift-Alfvén continuum
(in red), ωG, and ω∗i; (b) eigenmodes. The mode with ω < ω∗i, curve 1, is absent in the
ideal MHD. The mode with higher frequency, curve 2, is NGAE [4]. The latter has a node, in
agreement with the experiment.



6. Summary

Equations describing eigenmodes of both drift-Alfvén type and drift-sound type are de-
rived. A code BOAS solving these equations is developed. It takes into account factors
neglected in ideal MHD codes and can be used for analysis of MHD perturbations in any
type of toroidal fusion devices. Conditions of existence of LF modes are obtained. Mod-
elling of W7-AS discharges where instabilities in a wide frequency range were observed was
carried out. The instabilities with the lowest frequencies were identified as a destabilized
drift-sound mode and a drift-Alfvén mode. Note that these modes are absent in ideal
MHD and cannot be described by previous theories based on the ballooning formalism
(they are localized away from the rational flux surface). Thus, the existence of drift-sound
modes in toroidal plasmas is shown for the first time and new drift-Alfvén modes (with
ω . ω∗i) are predicted. It is shown experimentally that the modes rotating in different
directions can be destabilized simultaneously, which agrees with theory predictions.
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