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Abstract. Potential importance of electron cyclotron (EC) wave emission in the local electron power balance in 
the steady-state regimes of ITER operation suggested analyzing in more detail the accuracy of calculating the 1D 
distribution, over magnetic flux surfaces, of the net radiated power density, PEC(ρ). Recent comparison of 
numeric codes SNECTR, CYTRAN, CYNEQ and EXACTEC for different electron temperature profiles and 
average temperatures of relevance for fusion reactor-grade magnetoplasmas, has shown good agreement of 
results within two different cases: (A) specular reflection in a circular cylinder (SNECTR, EXACTEC) and (B) 
diffuse reflection in a circular cylinder (SNECTR), and diffuse reflection in any geometry or any reflection in a 
noncircular toroid (CYTRAN, CYNEQ). These cases were shown to provide, respectively, the lower and upper 
bounds for PEC(ρ), including that for the modulus of PEC(ρ), inverted in sign in the plasma column periphery. 
Here we extend this analysis to show the following approximate scaling laws on the example of calculations with 
CYNEQ: (i) new formula for the volume-integrated EC power loss, , which gives a simplest extension of 
the Trubnikov’s formula, originally suggested for homogeneous electron density ne and temperature Te, to the 
case of ne and Te profiles expected for ITER and DEMO; (ii) the normalized profiles, PEC(ρ)/ , for identical 
normalized temperature profiles, Te(ρ)/<Te>, appear to be very close for substantially different volume-averaged 
temperatures, <Te>; (iii) in the central plasma, profile PEC(ρ) in the case A may be close enough to that in the 
case B for larger value of wall reflectivity Rw, thus depending on an effective Rw, incorporating the type of 
reflection (diffusive or specular) and the geometry of the vacuum chamber.  
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1. Introduction  
 
Potential importance [1] of electron cyclotron (EC) wave emission in the local electron 
power balance in the steady-state regimes of ITER operation suggested the necessity to 
analyze in more detail the accuracy of calculating the 1D distribution, over magnetic flux 
surfaces, of the net radiated power density, PEC(ρ), which allows for the emission and 
absorption of EC waves, and their reflection from the vacuum chamber wall. To this end, 
very recently a comparison [2] of numeric codes SNECTR [3], CYTRAN [4], CYNEQ [5] 
and EXACTEC [6] was carried out for different electron temperature profiles and average 
temperatures of relevance for fusion reactor-grade magnetoplasmas. A comparison of results 
was made for the following cases:  
(A) specular reflection of the EC waves from the wall of the vacuum vessel, a cylinder with 

circular cross-section (EXACTEC and SNECTR),  
(B) (i) diffuse reflection in a circular cylinder (SNECTR),  

(ii) diffuse reflection in any geometry or any reflection in a noncircular toroid 
(CYTRAN and CYNEQ, based on the assumption [4] of the angle isotropy of the 
radiation intensity, which has been suggested by the results from SNECTR for 
these cases, especially for diffuse reflection in noncircular toroids, see [3,4]).  

 
The benchmarking [2] has shown good agreement of results within the cases A and B. The 
results [2] have confirmed the expectation that for large enough reflectivity of the vacuum 
vessel wall, Rw (>~0.5), the cases A and B provide, respectively, the lower and upper bounds 
for PEC(ρ), including that for the modulus of PEC(ρ), inverted in sign in the plasma column 
periphery because of the net self-heating of the plasma by EC waves in the periphery. This 
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expectation was based on the fact that either the diffuse reflection or the noncircular toroidal 
geometry make  
(*) the trajectories of the waves distributed more homogeneously over the plasma volume,  
(**) the radiation intensity more isotropic in the wave direction angles,  
as compared with the case of specular reflection in a circular cylinder. The above 
homogenization and isotropisation of radiation intensity are valid for radiation frequencies 
for which the mean free path of the waves is comparable with, or exceeds, the plasma 
column diameter, while these frequencies appear to be responsible for the dominant 
contribution to PEC(ρ) for large enough Rw (see [3-6]). In the case A, the radiation from the 
hot plasma core is reflected from the wall back and, hence, its re-absorption in the core is 
higher, as compared with the case B. In the latter case, the radiation from the hot plasma core 
travels longer in a colder periphery and is absorbed there stronger, giving a stronger reversal 
of PEC(ρ).  
 
Here we extend this analysis to show the following approximate scaling laws on the example 
of calculations with CYNEQ: (i) new simple formula for the volume-integrated EC power 
loss,  (Sec. 2); (ii) universal shape of the PEC(ρ) profile: namely, the normalized profile, 
PEC(ρ)/ , appears to be very close for identical normalized temperature profiles, Te(ρ)/<Te> 
and substantially different volume-averaged temperatures, <Te>; this suggests the possibility 
of characterizing the accuracy of various numeric codes (Sec. 3); and (iii) in the central part of 
plasma, profile PEC(ρ) in the case A may be close enough to that in the case B for larger value 
of Rw, that suggests introduction of an effective Rw, incorporating the type of reflection 
(diffusive or specular) and the geometry of the vacuum chamber (Sec. 4).  
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2. New Formula for Volume-Integrated EC Power Loss in Tokamaks  
 
The first successful attempt to suggest a fitting formula, which describes numerical results 
for the volume-integrated EC power loss, , in fusion reactor-grade plasmas, was done by 
Trubnikov [7] for homogeneous electron density ne and temperature Te (the accuracy of 
Trubnikov’s formula is ~50% in the range 5< Te <100 keV [7]; for the survey of subsequent 
variations/improvements see the survey [8]). Similar task for a wide class of inhomogeneous 
ne and Te profiles, defined by  
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(for βn=2) was fulfilled in [9] (first formula on page 674) via fitting (with an accuracy less 
than 10%) the results of direct numerical integration along EC wave path in toroidal 
geometry without wave’s reflection from the walls (Rw=0) and using the scaling law (1-
Rw)1/2, suggested in [7] for a cylinder and verified in [3] for a toroid. The treatment [9] 
extended the similar work [10] where both βn and βT were fixed (see Eq. (15) in [10]). 
However, the presence of particular parameters (βT, γT, γn, in [9] and γT, γn in [10]) requires 
solving an inverse problem of their reconstruction in the case when ne and Te profiles do not 
belong to the class of Eqs. (1),(2).  
 
To avoid this difficulty we propose a new formula which fits the numerical results from 
CYNEQ and gives a simplest extension of the formula [7] to the case of ne and Te profiles 
expected for fusion reactor-grade tokamaks (ITER and DEMO):  
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where the effective temperature  differs from the volume-averaged temperature, while 
effective density coincides with the volume-averaged density, 
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In Eq. (3), the density is in 1020 m-3, temperature, in keV; V  is plasma volume; 
major, R, and effective minor radius, allowing for elongation k, aeff=a⋅(k)1/2, are in meters; 
magnetic field on axis, B0, in Tesla. Here, the calculations of CYNEQ are carried out 
assuming that the profile of total magnetic field, averaged over magnetic surface, is flat, that, 
e.g., for ITER “inductive” regime is accurate to <20% [11]: Btot(ρ)=BT(0)≡ B0. Formula (3) 
coincides with the result [7] for a homogeneous Te and ne profiles if one uses Trubnikov’s 
transparency factor and takes the weakly relativistic expression for the volumetric (i.e. fully 
transparent) total EC power loss.  

22 eff

 
A comparison of absolute values and relative deviations of formula (3) and formula [9] from 
CYNEQ’s results is carried our for various temperature profiles given in Table I. Most of 
major parameters are taken close to ITER case: R=6.2 m, aeff=2 m, B0.=5.3 T, 0.6=WR , 

. The results are presented in Figure 1. 
Note that we compare with formula [9] for elongation k=1 (this corresponds to neglecting 
some deviation of this formula from the dependence on a and k via the unified parameter aeff). 
The ITB-profile designates a profile which is steeper than the “advanced” Te profile and is 
close enough to the case of the observed internal transport barriers. 

3 200 32(0) 1 10 , (1) 0.5 10 , 2, 0.1e e nn m n m β γ− −= ⋅ = ⋅ = =n

 
TABLE I: PARAMETERS OF TEMPERATURE PROFILES 

 
Profile number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Te(0) 20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50
Te, keV 

Te(1) 2 0.01 2 0.01 2 0.01 

Profile type 

parabolic 
with 

pedestal 
 

parabolic 
without 
pedestal 

 

ITB-profile 
with 

pedestal 
 

ITB-profile 
without 
pedestal 

 

advanced 
with 

pedestal 
 

advanced 
without 
pedestal 

 
Tγ Tβ Tγ 

 
It is seen that for the cases of most practical interest for a fusion reactor, namely profiles with 
a pedestal, the deviation is less than 25%. (Note that, e.g., for the regimes 1-4 taking T = 
<Te> in Eq. (3) gives the ~40% underestimate of CYNEQ’s results.) Also, formula [9] shows 
good agreement with the results from CYNEQ for Te profiles of Table I. 
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Tγ =1.5, Tβ =2 =16.1, =9.3 =8, Tβ =5.4 
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FIG. 1. Upper: comparison of EC total power loss, calculated with CYNEQ, formula (3) and formula 
[9] (first formula on page 674), for temperature profiles from Table I. Lower: relative deviations of 
these formulae from CYNEQ’s results, ,/ 1 100%tot tot CYNEQ

EC ECP Pδ = − ⋅ .  
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3. Universal Shape of Spatial Profile of Power Loss  
 
The shape of the PEC(ρ) profile is defined as a normalized profile, PEC(ρ)/ , where  is 
the volume-integrated EC power loss, while the shapes of electron density and temperature 
profiles are defined, respectively, as ne(ρ)/<ne> and Te(ρ)/<Te> , where < > denotes volume-
averaging.  
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FIG. 2. The normalized profiles of the net radiated power, PEC(ρ)/ , for different values of volume-
averaged temperature, <Te>, and identical shapes of temperature profile, Te(ρ)/<Te>, for the case of 
parabolic Te profile with a pedestal and wall reflectivity Rw = 0.6 and 0.9.  
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FIG. 3. The same as in FIG. 2, but for the “advanced” Te profile (with and without pedestal), wall 
reflectivity Rw = 0.8, and two slightly different ne profiles.  
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Figures 2,3 give a comparison of the normalized profiles for two different shapes of 
temperature profile (parabolic and “advanced”) and three values of wall reflectivity. It is seen 
that the shape of the PEC(ρ) profiles for identical shape of temperature profile, Te(ρ)/<Te>, 
appears to be very close for substantially different values of volume-averaged temperature, 
<Te>. 
 
The degree of similarity of normalized profiles appears to quantify the accuracy of basic 
approximations used in CYNEQ because these (namely, isotropy of the radiation intensity, 
spatial homogeneity of intensity in the optically thin (outer) region, rather weak sensitivity of 
PEC(ρ) to the definition of the boundary of this region in the {ρ,ω}-space) work better for 
higher Rw and not so steep profiles of plasma temperature and density. It is seen that in the 
plasma center the similarity is better for higher Rw, whereas in the region ρ=0.3-0.7, where 
CYNEQ is less accurate, the similarity is worse for all the values of Rw (Figure 4). Note that 
the decrease of CYNEQ’s accuracy in this region stems from the interpolation procedure 
between the optically thick core and the optically thin outer layer (which covers the entire 
plasma volume for a substantial part of frequency range responsible for major contribution to 
PEC(ρ), see Figs. 1,2 in [12]). This procedure is used in CYNEQ as an alternative to 
evaluation of the contribution of the optically thick core in CYTRAN [4] because the latter 
procedure formally gives a divergence of PEC(ρ) at ρ=0 and may overestimate PEC(ρ) in the 
central plasma.  
 
The above suggests the possibility of characterizing the accuracy of various numeric codes 
via comparing the universality of the shape of the PEC(ρ) profiles.  
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FIG. 4. The absolute value of the difference of the normalized profiles, obtained (for identical shapes 
of Te and ne, and equal values of Rw) by subtraction of the profile with the minimal <Te>. The 
difference of numbers in the curve’s labels corresponds to the difference of curves with respective 
numbers in Figure 2 (left) and Figure 3 (right).  
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4. An Effective Wall Reflection Coefficient  
 
The comparison of the results within two cases, A and B (as defined in Sec.1), enabled the 
authors [2] to prove these cases to provide, respectively, the lower and upper bounds for 
PEC(ρ), including that for the modulus of PEC(ρ), inverted in sign in the plasma column 
periphery. The difference of these cases is caused by the various types of heat transfer (or, 
equivalently, various distribution the EC wave ray trajectories over plasma volume) under 
condition of the dominance of heat transfer at those radiation frequencies for which the mean 
free path of EC waves, as shown in [3-6], is comparable with, or longer than, the plasma 
effective minor radius. Indeed, in the case A, one has direct interaction of the hot center with 
the wall, because the rays from hot center return back from the wall after specular reflection 
in a circular cylinder with a minimal loss of energy in the periphery, whereas in the case B, 
because of diffuse reflection from the wall or of the geometry (toroid with non-circular cross-
section), the ray from the hot center travels in the periphery (and heats it) as much as possible 
before coming back to the center. Besides causing the above-mentioned difference of the 
absolute values of the PEC(ρ) profile, these features of heat transfer allow to indicate another 
quantitative link of the cases A and B: the hot center may “see” the wall with an effective 
coefficient of reflection which incorporates the type of reflection (diffusive or specular) and 
the geometry of the vacuum chamber. The best way to illustrate this feature is to take a steep 
Te profile with more or less uniform plateau in the center. This is the case for the “advanced” 
Te profile. Figure 5 gives a solution of the inverse problem of reconstructing the value of the 
wall reflectivity Rw for which in the central part of plasma the profile PEC(ρ), calculated with 
CYNEQ, coincides with the available result from EXACTEC for a given, obviously smaller 
value of Rw.  
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FIG. 5. Approximate coincidence of the PEC(ρ) profiles in the central plasma, calculated with the 
codes EXACTEC (the curves are taken from Fig. 3 in [6]) and CYNEQ, for the “advanced” Te profile 
(and other conditions of the curve 1 in Figure 3 herein) and different values of wall reflectivity Rw.  
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5. Conclusions 
 
(a) A new formula, Eq. (3), is proposed which fits the numerical results from the code 
CYNEQ [5] for a wide range of Te profiles (for profiles with a pedestal, with an accuracy less 
than ~25%) and gives a simplest extension of the Trubnikov’s formula [7] to the case of ne 
and Te profiles expected for fusion reactor-grade tokamaks. This formula does not assume 
analytic representation of Te and ne profiles (e.g., in the form of Eqs. (1),(2)).  
 
(b) A universality of the shape of the PEC(ρ) profile is found: the normalized profile, 
PEC(ρ)/ , for identical normalized temperature profiles, Te(ρ)/<Te>, appears to be very 
close for substantially different volume-averaged temperatures, <Te>. The correlation of the 
degree of such a similarity with the accuracy of the code CYNEQ suggests the possibility of 
characterizing the accuracy of various numeric codes.  
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(c) It is possible to introduce an effective coefficient of wave’s reflection from the wall to 
incorporate the type of reflection (diffusive or specular) and the geometry of the vacuum 
chamber (e.g., circular cylinder or noncircular toroid): in the central plasma, PEC(ρ) in the 
case A (see Sec.1) may be close enough to that in the case B for a larger value of reflectivity.  
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