
1 TH/4-2

Turbulent transport and flow effects on NTM evolution and
trigger mechanisms

A Sen, R. Singh, D. Chandra, P. Kaw, D. Raju

Institute for Plasma Research, Bhat, Gandhinagar 382428, INDIA

Email address of main author:abhijit@ipr.res.in

Abstract. We study two problems related to the excitation and nonlinear evolution of neo-
classical tearing modes in a tokamak, namely, (i) the effect of a background of microturbulence
generated by short scale length instabilities such as the Ion Temperature Gradient (ITG) mode
or the Electron Temperature Gradient (ETG) mode and (ii) the effect of a toroidal sheared
flow on the stability of the m = 1 resistive internal kink mode that can provide the seed island
trigger for an NTM. A background of ITG turbulence generates an anomalous viscosity whereas
an ETG microturbulence leads to both anomalous current diffusivity and resistivity effects. The
concommitant changes in the linear and nonlinear characteristics of a single helicity NTM are
investigated analytically and expressed in terms of modifications of the Rutherford equations for
the island evolution. The effects of the toroidal sheared flow on the resistive internal kink mode
are investigated numerically using an initial value fully three dimensional toroidal code (NEAR)
that solves a set of generalized reduced MHD equations. Shear flow is found to significantly
modify both the linear growth rate and the nonlinear saturated island widths of the m = 1
mode.

1. Introduction

The excitation and nonlinear evolution of neoclassical tearing modes (NTM) is a subject
of much current interest due to their potential deleterious impact on plasma confinement
for long pulse experiments in superconducting tokamaks [1]. The size and lifetimes of
the NTM saturated magnetic islands also set a limit on the plasma β and can there-
fore seriously compromise the efficiency of future reactor configurations. Theoretical and
experimental efforts to gain a better understanding of the dynamics of NTMs and towards
developing efficient means of controling their growth has therefore become an active and
high priority area of research. While a great deal of progress has been achieved in delineat-
ing the basic features of this subcritical instability there are still a number of issues that
are not well resolved. Among them are issues related to the creation of the seed island
that triggers an NTM and the influence of shear flows and microturbulence on the excita-
tion and growth processes. In this paper we report on our investigations on two problems
related to these issues. Using an analytic approach based on the quasilinear theory, we
first calculate the anomalous transport coefficients generated by fine scale microturbu-
lence due to unstable ITG or ETG modes and then study the evolution of a single helicity
NTM in the presence of such a background turbulence. The linear and nonlinear modi-
fications in the characteristics of the NTM are obtained and their magnitudes estimated
for realistic tokamak parameters. For the seed island problem the stability of an m = 1
resistive internal kink mode is numerically investigated using the 3d resistive MHD code
NEAR in the presence of a sheared toroidal flow.

2. Turbulent transport effects on the NTM

Before we discuss the influence of turbulence induced anomalous transport phenomena
on the evolution of an NTM we briefly recapitulate the essential physics governing the
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dynamics of this sub-critical instability. A neoclassical tearing mode instability arises due
to the loss of the bootstrap current across a seed magnetic island located at a mode
rational surface. The bootstrap current loss caused by a flattening of the pressure profile
inside the island gives rise to a negative current perturbation that causes the island to
grow further and thereby leads to an instability. The basic features of the instability
can be obtained theoretically by including a bootstrap current source in the Ohm’s law
and thereafter carrying out the standard Rutherford analysis for a tearing mode [2]. This
consists of evaluating the parallel current contribution J‖ and then using it in the matching
conditions,
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to obtain the island evolution equation. Here ψ is the total poloidal flux function given
by,

ψ = −x2 B0

2Ls

+ ψ̃(t)cosξ (3)

where B0 is the average equilibrium toroidal magnetic field, x = r−rs is the distance from
the rational surface, Ls = qR/s is the shear length, s = rsq

′/q and q is the safety factor.

Further ξ = mθ̂ −
∫

ω(t′)dt′, θ̂ = θ − ζ/qs is the helical coordinate with θ denoting the
poloidal angle, ζ the toroidal angle and qs = m/n is the value of q at the mode rational
surface (m and n are the poloidal and toroidal mode numbers of the helical perturbed flux
function ψ̃). For m ≥ 2, when the constant ψ̃ approximation holds, the magnetic island
halfwidth is given by,

W =

(

4Lsψ̃

B0

)1/2

(4)

The modified Ohm’s law is given by,

ηJ‖ = −∇‖φ̃+
1

c

∂ψ̃

∂t
cos(ξ) − ηJb (5)

where

Jb =
µe

νei

c

Bθ

dp
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the perturbed bootstrap current is the driving source of the instability. Here µe is the
viscosity coefficient, νei is the electron-ion collision frequency, Bθ is the poloidal magnetic
field and p is the plasma pressure. In the simplest case where inertial effects are neglected
the quasineutrality condition ∇ · ~J = 0 can be approximated by ( ~B · ∇)J‖ ≈ 0 which
implies that J‖ is a flux function, i.e. J‖ = J‖(ψ). Following the standard procedure [2, 3]
one can then obtain an island evolution equation in the form,
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(6)

where, DR = ηc2/4π, βθ = 8πpe/B
2
θ , Lp = −(dlnp/dr)−1 and Lq = (dlnq/dr)−1. The

coefficients G1,G2 are constants and the Wχ term appears from consideration of finite
perpendicular thermal conductivity inside the island. It defines a threshold island width
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for the driving bootstrap term to overcome the stabilizing term (∆′
c < 0) and consitutes

the “seed island” necessary for the instability to occur. The above minimal form of the
modified Rutherford equation for the NTM instability can be improved upon by the
inclusion of additional contributions arising from curvature effects, polarization current
terms etc which can influence both the excitation threshold as well as the saturation
levels of the instability. In the following two subsections we will study the influence of
a background microturbulence generated respectively by the ITG and ETG instabilities
on the evolution characteristics of a single helicity NTM and express them in terms of
modifications of the modified Rutherford equation.

2.1. NTM in an ITG turbulence

The wide scale separation in the temporal and spatial characteristics of an NTM mode
and those of the ITG and ETG modes permits a multiple scale based analytic study
of the mutual inteactions between them. We exploit the fact that there is a sufficiently
large non-axisymmetry in the wave spectrum, which separates the long scale perturbation

(γq, ~q) of the slowly growing NTM from the short scale
(

ω,~k
)

perturbations of the ion

temperature gradient (ITG) or the electron temperature gradient (ETG) driven turbu-
lence. The evolution of the NTM can be obtained from a set of model equations consisting

of the vorticity equation, the quasineutrality condition
(

~∇ · ~J = 0
)

and the parallel elec-

tron momentum equation (Ohm’s law). To account for the background ITG turbulence
one includes the slow time and long wavelength response of the nonlinear terms in these
equations. The model equations can then be written in the form,
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(7)

β

2

∂
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Ã‖q + ∇‖φ̃q − η̂∇2

⊥Ã‖q = η̂Jb (8)

The right hand side of Eq.(7) consists of the Reynold stress contributions representing
the quadratic nonlinear interactions of the background ITG modes [4], with < .. >
representing averaging over the fast time scales and [ , ] denoting a Poisson bracket. The
other parameters are normalized as,
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Ti
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.

We adopt a quasilinear approach for calculating the nonlinear terms on the right hand
side of Eq.(7). In the limit qx > qy, Eq.(7) can be rewritten as,

d(i)

dt
∇2

⊥φ̃q + ∇‖∇2
⊥Ã‖q = ∇2

x

∫
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In the absence of any source, sinks and slow variation terms the total energy is conserved.
Thus we can write an adiabatic invariant, Nk = Ek/ωk where Ek is the energy of the
kth-mode and ωk is the frequency. The response of the tearing mode perturbations on the
ITG turbulence can be calculated from a wave kinetic equation [5],

∂Nk

∂t
+
∂ω

∂~k

∂Nk

∂X
− ∂

∂ ~X
(ω + k · ṼE)

∂Nk

∂~k
= γNk − ∆ωN2

k (10)

Here k·ṼE is the effective doppler shift from the slowly varying perturbation. The nonlinear
term in Eq.(7) is a function of Nk via δ|φ|2 = (δ|φk|2/δNk) δNk = ∆ITG

∗ δNk. From (10)
the response of the slowly varying field is ,

δNk =
ky

(γITG
k − iΩq + iqxVgx)

∂2φ̃q

∂X2

∂N0

∂kX

(11)

Substituting Eq.(11) into Eq. (9) we get,

d(i)

dt
∇2

⊥φ̃q + ∇‖∇2
⊥Ã‖q = µan

i

∂4φ̃q

∂x4
(12)

where,
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i =

∫
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k2

ykxγ
ITG
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(γ2
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xV
2
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ITG
∗

(

−∂N0

∂kx

)

and we have retained only the leading contribution on the right hand side. Thus the
presence of a background ITG turbulence gives rise to an anomalous viscosity coefficient
µan

i . To assess the impact of this term on the nonlinear evolution of the NTM we need to
solve (12) for J‖(= ∇2

⊥Ã‖q) and use it in the matching conditions (1) and (2). Carrying out
this procedure we find that the term does not contribute to the island growth equation (i.e.
to matching condition (1)) due to symmetry considerations but makes a finite contribution
to the matching condition (2) which gives an island rotation equation of the form,

∂

∂t
[W (ω − ωE)] = −G3

µan
i

W
(ω − ωE) −G4

(

nsVA

R2q

)2

W 4∆
′

s (13)

where ω is here the island rotation frequency and ωE is the poloidal rotation frequency due
to the perturbed radial electric field. We estimate the magnitude of anomalous viscosity
by taking an average saturated amplitude of the background ITG turbulence from mixing

length arguments to be eφITG

Te

Ln

ρs
≃ 1,. This yields µan

i ≃ (1 + τi + τiΓ0)
kyρs√

τiǫn(ηi−ηth)
. This

additional viscous drag due to the background turbulence can enhance the island braking
process and contribute to a mode locking process.
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2.2. NTM in an ETG Turbulence

We next investigate the nonlinear evolution of a NTM in a background of ETG mode
turbulence. The equations for the slow, long scale NTM are once again the vorticity and
parallel electron momentum equations. When averaged over fast time and space scales,
these equations become:

d(i)

dt
∇2

⊥φ̃q + ∇‖∇2
⊥Ã‖q = −

〈[

φETG
k ,∇2

⊥φ
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k

]〉

+
β

2
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(14)

β

2
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∂
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(
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)
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β

2
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(
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k
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k ,∇2
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where d(e)

dt
=
(

∂
∂t

+ αe
∂
∂y

)

. In the above equations space, time and perturbed fields associ-

ated with the NTM mode are normalized as in the previous section whereas the nonlinear
terms arising from the coupling between the NTM and the ETG modes [6] are normalized
as,

kETG
⊥ → kETG

⊥ ρe, φ̃ETG
k → eδφ

Te

Ln

ρe

, t→ t′Ln/cs,

ω → ωLn/ce, AETG
‖k → eδA‖

Te

ce
c

Ln

ρe

2

β
, ∇‖ → Ln∇‖,

where ρe and ce are the Larmor radius and thermal velocity of the electrons respectively
and αe = 1+ηe. Note that in contrast to the ITG case, nonlinear interaction terms appear
in the Ohm’s law as well due to finite electron inertia effects and can thereby impact the
NTM dynamics in a significant way. We can estimate the nonlinear contributions once
again through the quasilinear approach as described in the previous section. Before doing
that we list below the linear relation between the various fields of the ETG mode [6],

ÃETG
‖k = k‖

[

ω − 10
3
ǫnky − (1 + ηe) − 5

3
(1 − τ)ky

]

[

β
2
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yω
] [
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k ≈
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≡ Rpφ
ETG
k

The real frequency and the linear growth rate of the ETG mode are,

ωr0 ≈
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2(τe + k2
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(
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4τe
+
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Including the parallel electron motion perturbatively results in a shift of the real frequency
and a stabilizing effect on the growth rate. For β < 1, the magnitude of the frequency
shift and the stabilizing contribution due to parallel motion are

ω1 =
kyk

2
‖

ω2
r0 + r2

o

(

ηe −
2

3
+

10

3
ǫn

)

(16)
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γ1 = −
k2
‖

2γ0
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Using these linear responses, the nonlinear terms in Eqns. (14)− (15) can be expessed in
terms of |φ̃ETG

k |2. In the limit qx > qy and β/2 > me

mi
ρ2

sk
2
⊥. Eqns. (14)-(15) can be rewritten

as,
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∂

∂t
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∂
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ρe
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{
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p R
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}]

RI
A|φ̃ETG

k |2 (19)

The action density Nk ∝ |φETG
k |2 is the adiabatic invariant that couples to the slow NTM

via the wave kinetic equation (WKE). The real frequency and growth rate expressions in
the WKE are modified by the presence of the slow mode. The effective shift of real and
imaginary frequencies from the slowly varying field can be written as

δω1 = ~k⊥ ·
[

z × ~∇φ̃q −
β

2
vg‖ẑ × ~∇Ã‖q

]

(20)

δγ1 = −β
2

(

∂γETG
k

∂kz

)

~k⊥ · ẑ × ~∇Ã‖q (21)

Here Vg‖ = ∂ω1/∂k‖ and ∂γETG
k1 /∂k‖ can be calculated from Eq.(16) and (17) and Ã‖q ,

the slow perturbation results from the modulation of frequency and growth rate of ETG
via k‖ modulation, where δk‖ → ~z × ~∇Ã‖q/B. The linearized wave kinetic equation can
now be written as

∂

∂t
δNq + Vg · ∇δNq − ky∇2

x

(

φ̃q −
β

2
Vg‖Ã‖q

)

∂N0

∂kx

≃ −γkδNk −
β

2

∂γk1

∂k‖
ky∇xÃ‖qN0 (22)

and which can be solved to give,

δNq = ky∇2
x

(

φ̃q −
β

2
vg‖Ã‖q

)

∂N0

∂kx

R(qvgx) − ky
β

2

∂γk1

∂k‖
∇xÃ‖qN0R(qxvgx) (23)

where R(qvgx) = (γk + iqxvgx + γq)
−1. Substituting (23) into Eqs. (18) and (19), the

governing equations for the NTM then take the form:

d(i)

dt
∇2

xφ̃q + ∇‖∇2
xÃ‖q = −µe⊥∇4

xφ̃q (24)

β

2

d(e)

dt
Ã‖q − η̂∇2

⊥Ã‖q + ∇‖φ̃q + η̂Jb = −µan
‖ ∇4

xÃ‖q + µan
B ∇2

xÃ‖q (25)

where
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[

ρ2
e
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s

∫

d3kk2
ykx

(
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2
|RA|2

)

Re(qxvgx)

(

−∂N0

∂kx
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‖ =

[

β

2

ρ2
e
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s
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I
Avg‖

(

−∂N0

∂kx

)

R(qvgx)
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µan
B =

[

β

2

ρe

ρs

∫

d3kk2
y

(

−∂γk1

∂k‖

)

{

k2
⊥ +

(

1 −RR
p

{
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pR
R
A

RR
p R

I
A

})}

×RI
AR(qxvgx)N0

]

Here µan
‖ , µ

an
B > 0 represent anomalous current diffusivity and resistivity arising from the

ETG turbulence effects. A standard Rutherford analysis of the coupled equations (24)
and (25) leads to a modified island evolution equation of the form,

G5
W 2

W 2 +W 2
an

∂W

∂t
= Dan

R

[

∆′
c

4
+G6

√
ǫβθ

Lq

Lp

W

W 2

W 2 +W 2
an

]

(26)

where G5, G6 are constants, Dan
R = DR + µan

B c
2/4π and Wan is proportional to µan

‖ /η̂.
Thus we find that the anomalous current diffusivity arising from ETG turbulence gives
rise to an effect that is similar to perpendicular thermal conductivity and defines a new
threshold for the onset of the NTM instability [7, 8]. The effect is most pronounced at
small island widths. The µan

B contribution acts like an anomalous resistivity effect and
adds to the classical resistivity term. It can therefore influence both the linear as well as
the nonlinear growth rate of the island.

3. Sheared flow effects on the resistive internal kink mode

In this section we briefly report on our preliminary investigation of the effect of a sheared
toroidal flow on the linear and nonlinear characteristics of the resistive internal kink mode.
The overall objective is to assess the impact of such a flow on the excitation and size of the
“seed” island that acts as a trigger for the NTM. Many experimental observations have
seen a strong correlation between a large sawteeth crash and the emergence of a seed island
with the subsequent development of an NTM instability. Since the internal resistive kink
instability is intimately involved in the sawtooth phenomenon we focus our attention on
the evolution of such an instability in the presence of flow. Our study is primarily numerical
and is based on the solution of a set of generalized reduced MHD equations that have
been used in the past for NTM studies [9]. A fully toroidal three dimensional code called
NEAR is employed for this purpose. After generating an appropriate equilibrium with flow
in another independent code called TOQ [10], the time evolution of an m = 1 internal
kink mode is studied in NEAR for this equilibrium. The initial q profile is chosen such that
q(0) < 1 so that the internal kink mode is unstable. The effect of both differential flow
and flow shear are studied by choosing different toroidal flow profiles. Our preliminary
results are displayed in Fig. 1. For both differential as well as shear flow profiles [9] we find
that the linear growth of the kink mode is reduced as a function of the flow magnitude.
However as the mode evolves nonlinearly and eventually saturates the presence of flow
tends to increase the saturated island width. More detailed parametric studies including
the effect of varying the resistivity and viscosity are currently in progress for a better
understanding of the nonlinear dynamics.

4. Summary and Discussion

To summarize, we have carried out a model calculation to assess the effect of a background
microturbulence of ITG or ETG modes on the linear and nonlinear characteristics of a
single helicity neoclassical tearing mode. A quasilinear self-consistent analysis shows the
generation of anomalous viscosity terms in the case of ITG turbulence which can cause an
enhanced slowing down of the rotation of the mode. A background of ETG turbulence can
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Figure 1. (a) The reduction in the linear growth rate of the resistive internal kink mode as
a function of the differential flow amount. (b) A comparison of the nonlinear characteristics of
the mode in the absence and presence of differential and sheared flows.

provide anomalous resistive effects which can influence the linear and nonlinear growth of
the NTM. In addition it also creates an anomalous current diffusivity which introduces a
new seed island threshold for the excitation of the NTM in a manner analogous to finite
thermal conduction effects. We have also carried out a preliminary numerical investigation
of the effect of a toroidal equilibrium flow on the development of an internal resistive
kink mode and found significant flow induced modifications in the linear and nonlinear
characteristics of the mode. This can have important implications for the excitation of a
“seed” island normally associated with a sawtooth crash.
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