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Behaviour of turbulent transport in the vicinity of a magnetic island
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Abstract The influence of a magnetic island on the behaviour of electrostatic turbulence in a tokamak
is investigated numerically employing global gyrokinetic particle-in-cell simulations. Close to and inside
the reconnected region, the shape of the turbulent eddies is changed; in particular, the transport at the
island separatrix around theO-point is reduced. Low mode numbers in the energy spectrum of the
potential disturbances, corresponding to the island perturbation, are amplified by nonlinear coupling
with the microinstabilities. The temperature profile in the island region is determined numerically and
its consistency with analytic estimates is discussed.

1. Introduction
The tearing mode [1,2] is a resistive magnetohydrodynamic instability which leads to recon-
nection of the magnetic field within a layer around a given “resonant” surface. In a tokamak,
tearing modes lead to the appearence of magnetic islands on low-order rational magnetic sur-
faces. Since within the island the magnetic field connects regions on both sides of the rational
surface, the fast parallel streaming of the particles along the field lines leads to the consequence
that a pressure gradient cannot be sustained inside the island separatrix. In today’s tokamak
experiments, the tearing mode is often driven unstable by the bootstrap current perturbation
caused by the flattening of the pressure profile inside the island [3–5]. In this case the mode
is called Neoclassical Tearing Mode (NTM). For a complete description of the dynamics of a
NTM, it is therefore necessary to understand the interplay between the mode and the transport
processes that determine the density and temperature profiles of the plasma. In a fusion reactor,
the transport is to a large extent determined by microinstabilites leading to the formation of tur-
bulent structures which enhance the particle and heat fluxes well above the neoclassical level. A
magnetic island has a direct influence on the radial transport, since it provides a radial magnetic-
field component, thus leading to the appearence of a radial parallel transport, which is otherwise
absent in tokamaks. Moreover, the above-mentioned flattening of the pressure profile inside the
island drastically reduces the drive of the turbulence. Finally, the development and the shape of
the turbulent structures can be modified by the helical field of the mode. The turbulence itself
can affect the dynamics of magnetic islands, first of all providing “seed islands” in the pres-
ence of strong electromagnetic turbulence, and contributing to determining the pressure profile
(and hence the level of bootstrap current) around the island separatrix, where perpendicular and
parallel transport are supposed to be comparable (cf. Sec. 4).
From the previous considerations, it emerges that the topic we are discussing involves a wide
range of time and scale lenghts, namely those characterizing the motion of the particles, those
typical of the turbulent processes up to the evolution space- and timescales of the island and
of the equilibrium itself. This makes a complete solution of the problem not affordable. Here,
we will focus on the features of electrostatic turbulence in the presence of a prescribed island.
Therefore, no evolution of the mode is retained in our numerical scheme, i. e. the island width
has a fixed value and no island rotation is considered.
The problem of turbulent transport in the presence of an island is studied in this paper employ-
ing the global gyrokinetic particle-in-cell (PIC) code ORB5 [8]. The gyrokinetic equation is
solved following the trajectories of an ensemble of markers moving according to the gyroki-
netic equations of motion. The self-consistent electric field is calculated by solving the Poisson
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equation on a fixed spatial grid. In the simulations presented here, only electrostatic instabil-
ities are considered. In this scheme, the inclusion of an island structure can be performed in
a straightforward way by adding a small radial magnetic-field component in the equations of
motion, which allows to account for the most important modification of particle orbits [9] (the
details are explained in Sec. 2). It is noted that a gyrokinetic approach is needed not only to
properly treat the dynamics of the microinstabilities, but also because finite-orbit effects can
become essential for small islands and in any case around the separatrix [10,11].

2. The numerical scheme
ORB5 provides a numerical solution to the gyrokinetic equations in the formulation of
T. S. Hahm [12]. The distribution function is split into an analytically-known time-independent
part f0 and a perturbationδ f which is represented numerically by an ensemble of markers.
These markers evolve in time according to the gyrokinetic equations of motion,
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whereR is the position of the gyrocentre,vk the velocity component along the magnetic field,b
the unit vector along the magnetic fieldB, µ the magnetic moment,Ωci the cyclotron frequency,
hφig the perturbed potential (solution of the Poisson equation) averaged over the gyroperiod,
qi andmi the particle’s charge and mass, respectively, andB�k = B+(mi=qi)vkb �∇�b. Since
along the orbits df=dt = 0, δ f must obey the equation
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whereρ is a vector directed from the gyrocentre to the position of the particle andhφi is the
flux-surface-averaged potential. The charge connected to each marker is assigned pointwise to
a spatial mesh (charge assignment) in order to provide the source term for the Poisson equation.
The computation of the gyroaveraged density follows an adaptive procedure, in order to have
the same number of sampling points per arclength along the gyro-ring. Once the perturbed
gyroaveraged charge density associated with each marker has been projected onto the splines,
the equation for the components of the potential on this basis reduces to an algebraic matrix
equation.
It should be added that the same spline basis is used to interpolate the radial magnetic-field
perturbation, which is initially assigned on a grid.



3 IAEA-CN-165 / TH / 3-1

0 100 200 300 400 500
2

4

6

8

10

12

R
/L

T

time [a/c
s
]

0.4 0.5 0.6 0.7 0.8 0.9
0.8

0.9

1

1.1

1.2

1.3

s

T
i/T

i(s
0)

 

 
initial
no turbulence
final

FIG. 1: Left: Typical temperature profile of a numerical simulation at different time slices.
In this simulation, the ratio between the thermal ion banana width wb and the island width
W is about 0.4. Right: the evolution of the normalized inverse gradient length R=LT: solid
lines correspond to radial positions around the inner island separatrix, dashed line to the outer
separatrix. The lowest curve refers to the centre of the island.

3. Magnetic islands
In the presence of a magnetic island, the magnetic field can be represented as

B = ∇ψt �∇ξ=m+∇ϕ�∇Ψhe; (6)

whereψt is the toroidal flux,ξ = mθ�nϕ is the helical angle (θ andϕ being the poloidal and
toroidal angles, respectively, andm andn the poloidal and toroidal number characterising the
island) and

Ψhe= ψ�
ψt

qs
+αcosξ (7)

is the helical flux (ψ is the poloidal flux and the subscripts denotes that a quantity is calculated
at the resonant(m;n) surface). Ifα = 0, it is easy to show that Eqs. (6,7) reduce to the usual
representation of the magnetic field. The last term of Eq.(7) describes the field perturbation due
to the island, which is thereforẽB= α∇ϕ�∇cosξ= mαsinξ∇θ�∇ϕ (here,α is approximated
to be a constant). The new field component is directed along∇ψ. The helical flux introduced in
Eq.(7) can be used to label the perturbed magnetic surfaces, asB �∇Ψhe= 0. The most impor-
tant consequence for the particle trajectories resulting from the new magnetic-field topology is
that the motion parallel to the field includes now a radial component. This has been included in
ORB5 by substitutingb! b+ b̃ (whereb̃ = B̃=B) in the first term of both Eq.(1) and Eq.(2).
An important quantity which determines how fast the particles can stream along the island in the
ξ-direction is the parallel wavevectorkk, which is proportional to the distance from the rational
surface and to the magnetic shear:

kk =
m
qR

r� rs

Lq
=

εsssn
r2
s

(r� rs); (8)

where 1=Lq = (1=q)dq=dr is the inverse length characterizing the safety-factor profile,ε is the
inverse aspect ratio ands the magnetic shear.
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FIG. 2: Time evolution of the energy spectrum for moderate island width (left, only even modes
retained) and large island width (right, longer run). On the x-axis is the time and on the y-axis
is the toroidal mode number.

4. Parallel and perpendicular transport close to the island separatrix
As already pointed out in the Introduction, since the transport along the field lines is much
larger than across the field, the pressure profile can be thought to be a function of the perturbed
magnetic-flux labelΨhe introduced above. Under this assumption, the pressure gradient jumps
from a finite value to zero when the island separatrix is crossed. However, the ratio between,
say, the parallel and perpendicular heat conductivity in a tokamak is indeed very large (up to
χk=χ? � 109�1010) but finite. As a consequence, a boundary layer appears around the island
separatrix, along which the heat is transported from one side of the rational surface to the other
[6,7]. The features of this process have been investigated solving the steady-state heat diffusion
equation [6]

χk∇2
kT +χ?∇2

?T = 0; (9)

or, alternatively,1 the kinetic equation [7]

vk∇k f = D?∇2 f : (10)

The critical width wc in which parallel and perendicular transport compete is obtained by
equating the two terms of the previous equations. Thus in Eq. (9) we can estimateχkk2

k �

χ?=w2
c, and assumingr � rs � wc in Eq. (8), the scaling forwc turns out to bewc=r �

(χ?=χk)1=4
(1=εsssn)1=2. The corresponding estimate derived from Eq. (10), namelywc �

(D?=kkvth)
1=2, can be reduced to the above if a parallel diffivityDk � vth=kk is introduced

(see footnote) and again takingr � rs� wc in Eq.(8). In the transition layer, the temperature
is not a flux-surface function. The heat is found to be transported along the layer and to flow
across the rational surface near theX-point [6]. The analysis of [7], moreover, predicts that the
jump ∆ f of the distribution function on both sides of the island should be proportional to the
gradient df=dr at the island separatix, the proportionality factor being given by the width of the

critical layerwc '
q

χ?=kkvth.

In the next section, these picture is compared with the results of direct numerical simulations
of turbulent transport. It has to be stressed that, in both approaches, the dependence of the

1It is noted that replacing conduction by convection , i. e. approximating in Eq.(9) the termχk∇2
kT with vk∇kT

(which is in turn equivalent to estimatingχk � vth=kk [6]) one obtains an equation of the same form as Eq.(10).
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perpendicular (heat) diffusion coefficient on the radial coordinateψ and on the helical angle
along the islandξ has been neglected, in order to obtain an analytic solution of the starting
equation.

5. Numerical results
The numerical simulations presented in this section have been performed for a tokamak with
circular concentric flux surfaces, major radiusR0 = 3:3 m and minor radiusa = 0:47 m. A
flat density gradient is considered, the turbulent transport being caused by an electrostatic
Ion-Temperature-Gradient (ITG) instability. As the proper computation of the flux-averaged
(“zonal”) potential with adiabatic electrons becomes extremely difficult in ORB5 if a magnetic
island is present, the results presented here do not include zonal flows. No sources are present,
so that the temperature profile relaxes according to the level of the heat flux. In order to avoid
a too fast relaxation and ensure a “quasi-stationary” turbulent phase, a pretty small value of the
normalized gyroradiusρ? � ρ=a= 1=320 has been taken. As this corresponds to a pretty low
value for the ion temperature, the ion streaming along the island is not very fast. Typical values
of χk=χ? are therefore2 in the range 106�107.
Since the initial temperature profile is a function of the constant unperturbed fluxψ, the tur-
bulence is switched off in the inital phase of each run to allow the markers to move along the
perturbed field lines, thus flattening the temperature profile in the island. During this phase, the
temperature gradient increases outside the island because the flux surfaces are “compressed”
with respect to the unperturbed equilibrium (without island). Subsequently, under the influence
of turbulent transport the temperature gradient decreases, particularly fast at the end of the lin-
ear phase (overshoot). At the end of the run, a phase with almost constant temperature gradient
in the island region is observed. An example of this evolution is shown in Fig. 1.
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FIG. 3: Normalized inverse gradient length R=LT and theE�B heat flux, as a function of the
radial coordinate s=

pψ and of the helical angleξ=2π, during the phase with fully-developed
turbulence.

First of all, the numerical results concerning the development of the turbulence in the island
region are discussed. An analysis of the energy spectrum of the turbulence shows that mov-
ing from the linear to the nonlinear phase the spectrum exhibits an inverse cascade to smaller
mode numbers. In our simulations with a (3,2) island, even toroidal numbers (multiples of the
island mode number) are found to dominate with respect to the odd ones for large island widths

2Here, according to Ref. [6], we estimateχk � vth=kk, see Sec. 4
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(cf. Fig. 2). Moreover, the low-n island modes are amplified through nonlinear coupling with
the turbulent modes. In our runs, seedn= 2-harmonics arise during the turbulence-free phase of
the run mentioned above; under experimental conditions, in general, the low-n potential associ-
ated to the island rotation with respect to the plasma can interact nonlinearly with the fluctuating
field of the microinstabilities. An analysis of the heat fluxes in the island region reveals that the
E�B transport is stronger for values ofξ corresponding to the islandO-point, where the flux
surfaces are closer to each other and the temperature gradient is therefore higher. However, this
is true only up to a given distance from the island. Close the separatrix, the largest fluxes are
found in theX-point region and the transport around theO-point is reduced. This result, which
is found in both the linear and in the nonlinear phase, can be explained by the fact that the
turbulentE�B eddies can develop across the resonant surface at theX-point position, whereas
it seems that they are broken across the separatrix in theO-point region (cd. Fig. 4).

FIG. 4: Breaking of the eddies near the separatrix and their deformation inside the island.

In other words, cross-surface transport can apparently occur without undergoing the process of
crossing the separatrix at theO-point and passing the rational surface at theX-point [6]. This
can have an impact on the shape of the temperature profile across the island (see below). In the
presence of zonal flows, the impact of elongated vortices across theX-point, however, could
become less important.
In the simulations, the ratio between the radialE�B flux

qE =

Z
mv2

2
vE δ f d3v

and the radial component of the parallel flux along the perturbed field lines

qk;r =
Z

mv2

2
vkb̃ δ f d3v

is calculated. As expected, inside the island separatrix there is a layer where these fluxes are of
the same size. Depending on the strength of the turbulence, the ratioqE=qk;r can be above or
below one. It is interesting to note that in the very centre of the island, this ratio can be one or
two order of magnitude higher than at the separatrix. In the island centre, the parallel transport
becomes less and less effective, sincekk is proportional to the distance from the rational surface,
whereas turbulent structures can in some case reach theO-point or be transported there by
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FIG. 5: Perpendicular thermal conductivity in gyro-Bohm units in the nonlinear phase for two
different value of the initial logarithmic temperature gradient. The highest values are attained
inside the island, since the temperature gradient is much smaller there. Coordinates as in Fig. 3.

the diamagnetic rotation of the instability. In any case,qE=qk;r can change significantly as a
consequence of small variations of the background gradients.
The behaviour of the temperature profile in the numerical simulations is in qualitative agreement
with the prediction obtained from an analytic solution [6] of the equation∇ �q = 0 summarized
in Sec. 4. The width of this transition layer seems to be smaller than in the analytic estimate,
probably because of the reduction of theO-point fluxes mentioned above. The suggested pro-
portionality between the jump∆T of the temperature profile on both sides of the island and
the gradient dT=dr at the island separatrix [7] is not confirmed by the simulations, where the
productwc dT=dr is found to increase faster than∆T if the temperature gradient is increased.
One possible explanation for the results reported above, which contradict analytic estimates, is
that the assumption of uniform heat conductivity is not verified in the simulations. Close to the
island separatrix,χ? displays a strong variation as a function of the radius and in particular of
the helical angle, see Fig. 5. Moreover,χ?;X andχ?;O vary differently depending on plasma
parameters, partcularly on the temperature gradient. Here,χ? is calculated as the ratio between
theE�B heat flux and the local (ξ-dependent) temperature gradient.

6. Conclusions
PIC codes allow a conceptually straightforward implementation of a magnetic island through a
modification of the equations of motion which take into account the presence of a (small) radial
component of the magnetic field. In the simulations presented here, where adiabatic electrons
were assumed and zonal flows were excluded, the temperature profile as determined by the tur-
bulent transport is in qualitative agreement with the analytic predictions: the temperature is flat
inside a sufficiently large island, is a flux function well outside it, with a transition layer located
at the island separatrix. The detailed structure of this transition layer, however, is connected
to the behaviour of the turbulence in the island region. In particular, the value of the thermal
diffusivity is found to vary significantly in both the radial and the helical direction. It has been
shown that when elongated eddies are present in theX-point region, a large part of the cross-
surface transport takes place there. In many circumstances, the transport across theO-point
region seems to be suppressed. The verification of the results presented here in the presence of
zonal flows, employing kinetic electrons, is under development.
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