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Field Reversed Configurations (FRC) could operate with advanced fuel cycles due to their 
high β value. We studied the use of neutral beams (NBI) [1] and fusion protons and α-
particles [2] to heat the plasma and sustain the current in a D-He

3 FRC reactor. The plasma 
parameters employed are similar to those proposed in the ARTEMIS conceptual reactor 
design [3] (Te=Ti=87.5 keV, Bext=6.7 T, a=1.12 m, L=17 m, nD/ne=0.5, nHe/ne =0.25). 
 
A Monte Carlo code previously employed to study NBI in FRCs and Spheromaks [4,5] was 
used to study the interaction of the NB and the fusion born protons and α-particles with the 
plasma. The code follows the exact particle orbits (no gyro-averaging) and includes particle 
drag and pitch angle scattering. An ionization package is included in the NBI studies to 
calculate the position and velocity of the neutrals when they ionize. Isotropic proton and α-
particle sources distributed inside the FRC according to the fusion reaction rate are 
considered when studying the interaction of these particles with the plasma. The equilibria 
employed in both cases were obtained by numerically solving the Grad-Shafranov equation 
with a pressure that includes linear and cuadratic terms in the poloidal magnetic flux. The 
shape of the equilibrium, "peaked" or "hollow", can be adjusted by changing the coefficient 
of the cuadratic (in the flux) term in the pressure. 
 
The NBI studies show that the beam current predicted in [3] (8 MA) can not be obtained 
with the proposed neutral energy (1 MeV) and current (5 A). A simple theoretical calculation 
that includes a velocity dependent particle drag and assumes perfectly circular orbits gives a 
total current of only 1.2 MA. The current calculated with the code was 0.32 MA for a peaked 
equilibrium (E1 in table 1 below) and even lower for a hollow equilibrium (E2). There are 
three reasons that explain why the current calculated with the code is lower than the 
theoretical calculation. The first one is that a fraction of the ionized particles, approximately 
18% for peaked and 62% for hollow equilibria, is lost through the ends of the configuration 
before becoming thermalized and hence their contribution to the current is smaller than 
assumed in the theoretical calculation. These losses could be reduced adding magnetic 
mirrors but the resulting magnetic field structure has to be compatible with the direct energy 
converters included in the ARTEMIS design. The second one is that due to the particular 
magnetic field structure of FRCs a fraction of the inyected neutral particles, those ionized 
close to the separatrix, end up rotating around the FRC in the counter current sense 
("negative" particles). The third one is that, due to the low beam energy, most "positive" 
particles have orbits with large radial oscillations while circular orbits were assumed in the 
theoretical calculation. 
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Fig. 1 shows the initial orbits of particles ionized at different locations (collisions not 
included). In Fig. 1a the particles rotate in the current sense ("positive") while in Fig. 1b they 
rotate in the "negative" sense. In both figures, 1 and 2 indicate the position where the 
particles where ionized and 1' and 2' the final position, after the same amount of time. It is 
clear that positive particles rotate faster than negative ones. Fig. 2 shows the beam current 
profile for the E1 equilibrium. The beam was inyected at the midplane with impact 
parameter equal to the null radius, the axial dispersion is due to collisions. 
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The protons (14.6 MeV) and α-particles (3.7 MeV) produced in the D-He

3 fusion reactions 
can contribute to heat the plasma and sustain the current. Three equilibria were analized, all 
with the same basic parameters indicated above and different magnetic field and presurre 
profiles. Different quantities that characterize these equilibria are shown in table 1: 
 

Table 1. Relevant quantities for the different equilibria analyzed 
 

 na (1020 m-3) Ne (×1022) Pp (MW) Pα (MW) Et (MJ) β 

E1 3.2 2.2 336.5 83.8 823.5 0.44 
E2 5.5 3.8 766.8 190.9 1427 0.75 
E3 3.1 2.15 330.1 82.2 792.9 0.42 

 
where na is the average electron density, Ne is the total number of electrons, Pp is the total 
proton power generated, Pα is the total α-particle power generated, Et is the total thermal 
energy of the plasma and β is calculated with the external magnetic field.  
 
 An analysis of the proton orbits shows that there are more protons rotating in the current 
sense ("positive") and that the average azimuthal velocity of these protons is higher than the 
velocity of those rotating in the opposite sense. In addition, negative current particles tend to 
be lost much faster than positive ones due to collisions. These two features explain why 
isotropic proton sources distributed inside the FRC can generate a net current.  
 
The results obtained for the different equilibria are summarized in table 2. Ip and Iα are the 
proton and α-particle currents, Ppe and Ppi are the power deposited by the protons on the 
electrons and ions and Pαi and Pαe the same for the α-particles. The last column in the table 
(τE) indicates the global energy confinement time that would be needed to sustain the plasma 
temperature. The proton current can reach the values proposed in [3] but the fraction of the 
proton power deposited in the plasma is small. This fraction depends strongly on the 
equilibrium profiles, being 46.6% for E3 and only 16% for E2. This shows that the 

Fig. 1. Orbits of ions ionized at different locations Fig. 2. Beam current profile 

a b 
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equilibrium with the highest fusion power has the poorest proton confinement.  Fig. 3 shows 
the proton current profile and Fig. 4 the profile of the total power deposited by the protons. 
 

Table 2. Current and deposited power 
 

 Ip (MA) Iα (MA) Pp,e (MW) Pp,i (MW) Pα,e (MW) Pα,i (MW) τE(s) 
E1 39.4 1.65 110.8 7.2 16.2 54.8 4.35 
E2 34.8 2.9 92.9 2.9 14.9 43.4 9.26 
E3 46.6 1.8 141.8 12.1 12.7 41.6 3.80 
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Since the power deposited by the protons is a small fraction of the total generated power it is 
important to investigate methods to improve proton confinement. We already mentioned the 
possibility of adding magnetic mirrors to reduce axial losses. We also investigated the effect 
that a toroidal field would have on the confinement. The self-generation of weak toroidal 
fields has been observed in experiments where the FRC is formed/sustained by rotating 
magnetic fields (RMF). Here we 
investigate the simpler case of an 
externally produced ("vacuum") 
toroidal field. The toroidal field is 
assumed to increase linearly from r=0 
to r=0.1 m and decrease like 1/r at 
larger values of r. The results are 
presented in Fig. 5, which shows plots 
of the proton current and deposited 
power as a function of Bθ(r=R)/Bext, 
where R is the null radius. It is 
surprising that both the current and the 
deposited power decrease sharply at 
low toroidal field. An analysis of 
particle losses indicates that for low values of the toroidal field the losses through the ends 
increase with the toroidal field and the average life time of the particles inside the FRC 
decreases. When the toroidal field increases beyond the value corresponding to the minimum 
of P (Fig. 5) radial losses decrease and the average life time of the particles increases. 
 
Relaxation in a flux core spheromak 
 
The spontaneous formation of a Flux-Core Spheromak (FCS) from an unstable screw-pinch 
was studied using 3-D numerical simulations. The resistive, isothermal MHD equations were 
solved using the Versatile Advection Code (VAC) [6] which includes a shock-capturing 
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Fig. 3. Proton currrent profile Fig. 4. Deposited proton power 

   Fig. 5. Proton current and deposited  power as a 

function of the external toroidal field 
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scheme based in a Roe-type Riemann solver and a Woodward limiter. The divergence-free 
condition (∇⋅B=0) is maintained using the projection method. To simplify the physics we do 
not advance the density. This corresponds to a constant pressure computation, usually 
referred to as the zero-β (or zero-pressure) approximation, widely used when modelling low-
β plasmas. The FCS is formed inside a cylindrical flux conserver of radius a with electrodes 
of radius re (re<a) at both ends.   
 
A uniform cartesian grid is used, with Nx×Ny×Nz=100×100×75. The cylindrical flux 
conserver is constructed using appropriate values at ghost cells, i.e. knowing the solution 
inside the flux conserver (r<a) we set the values of external grid points (r>a) in such a way 
that the boundary conditions are satisfied (at r=a), up to the interpolation error. The perfectly 

conducting wall conditions employed are: B· n̂ =0 and J× n̂ =0. At the electrodes (r<re, z=0 
and r<re, z=h), periodic boundary conditions are applied. The initial condition is a force-free 
screw-pinch, obtained by solving the equation ∇×B(r)=λ(r)B(r) with a tanh λ profile that 
goes smootly from λ0 at the electrode (r<re) to zero outside (re<r<a). 

 

The simulation presented here has normalized cylinder radius and height a=1 and h=1.5 
respectively, and the electrode size is re=0.35. With this geometry the first eigenfunction of 
the Taylor state is λTaylor=4.3667. The resistivity is set to η=10-4. Following Izzo and Jarboe 
[7], the resistive time scale is τr=1/ηλ²~500. The Alfven time scale is taken to be 
τA=R√ρ/B0=1, since ρ=1, and B0=Bz(r=0,t=0)=1; in the following all times are in units of τA. 
With these parameters the Lundquist number of the simulation is S=τr/τA~500. 
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The formation of the FCS can be divided in five phases. Fig. 6 shows, on the left, the 
evolution of the total magnetic energy (Wtot), the kinetic energy (Ktot), the energy of the 
different modes (Wn), the poloidal flux (ψ), the relative helicity of the n=0 mode (Hn=0) and 
the ratio Hn=0/Wn=0. The rigth panel shows plots of λ=J.B/B2 at the transition times between 
different phases, which are indicated with vertical dotted lines on the left. 
 
In the first phase (t=0 to t=30), the n=1 mode grows rapidly (exponentially) and higher order 
modes begin to appear. The second phase (t=30 to t=45) shows the saturation of the n=1 
mode and the rapid growth of higher order modes. A small amount of kinetic energy also 
appears. In the third phase (t=45 to t~70) the n=1 energy decreases while higher order modes 
continue to grow. The fourth phase is the reconnection, which occurs around t=70 and 
produces the first closed flux tube of the spheromak. The final phase (t>70) involves the 
generation of the closed flux surfaces of the FCS. After the reconnection all the modes decay 
and axysimmetry is slowly recovered. 
 
The plots of λ show that initially all the current is concentrated in the electrode zone and 
diffuses smoothly until t=30. Later on (t=45), the MHD activity spreads the current to larger 
radius and reduces its value at the center. The reconnection reestablishes the current in the 
central zone. Finally, the profile becomes more uniform but a minimum remains near r=0.3, 
where the transition from open to closed flux surfaces is located. The boundary conditions 
applied at the flux conserver (J× n̂ =0) are responsible for the drop near r=1 and the 
antiparallel current observed at t=45 and t=70. Fig. 7 shows selected magnetic field lines at 
different times.  
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Fig. 7a. Kink, t=30 Fig. 7b. Saturation, t=45 

Fig. 7c. Reconnection, t=69 Fig. 7d. Reconnection, t=71 
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Fig. 8 shows the safety factor profiles obtained for the same conditions as in Fig. 6., and also 
for a higher elongation (re=0.35, h=1.7) and a smaller elctrode radius (re=0.25, h=1.5). 
 
Oscillating field current drive   

 
Modeling Rotating Magnetic Field (RMF) current drive has been the subject of several 
studies. In general, an infinite plasma column is considered and the radial component of the 
current density is neglected. Experimental results for FRCs with RMF formation and/or 
sustainment generally show a higher efficiency than estimated by infinite column models. 
This discrepancy has been the subject of some speculation and the actual mechanism 
involved is not well understood, being attributed to 3D effects. 
 
Here, we present a method to include 3D effects at the equatorial plane, where measurements 
are usually done. The model takes into account the radial component of Ohm's law and 
reproduces quite satisfactorily the observed features [8]. By considering elongated FRCs and 
antennae systems and properly taking into account symmetry properties of the configuration 
plus RMF at the equatorial plane it is possible to reduce the problem of finding steady states 
to the solution of two coupled nonlinear differential equations, for the real and imaginary 
parts of the phasor associated to the longitudinal magnetic vector potential. The boundary 
conditions employed correspond to matching the external RMF at the plasma-vacuum 
interface and requesting that the radial current density and steady poloidal magnetic stream 
function vanish there. 
 
We consider a 3D FRC subject to a transverse RMF and work in the Coulomb gauge. 
Cylindrical coordinates r, θ, z are used and z=0 is assumed to correspond to an equatorial 
plane of symmetry or antisymmetry. All quantities can be expressed as the sum of a time 
independent part (eventually vanishing), depending only on r and z, plus a time dependent 
part depending on r, z and the combination θ-ω t, where ω is the frequency associated to the 
RMF. Some quantities are even in z while others are odd. The plasma resistivity, η, is 
assumed uniform and plasma density and temperature gradients are neglected. 
 
The equations for the real and imaginary parts of the phasor of the longitudinal component 
of the vector potential (normalized) depend on two dimensionless parameters, λ and γ, which 

Fig. 7e. Closed flux surfaces, t=137 Fig.8. Safety factor profiles 
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are related to the classical skin depth and the applied RMF strength: 

ηωµλ 2/2
0

2
sr= , ηγ ω enb /= , where: rs is the separatrix radius, bω is the normalized 

amplitude of the RMF and n the plasma density. 
 
The current drive efficiency is quantified in terms of the average synchronism of the 
electrons. This dimensionless parameter, which is indicated with ζ, is defined as the ratio of 
the diamagnetism over the maximum possible or, alternatively, as the ratio of the azimuthal 
electron current to the current that would result if all the electrons rotate synchronously with 
the RMF (i.e. the average electron rotation frequency over the RMF frequency). 
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where the tilde indicates normalized quantities. 
 
Fig. 9 presents a plot of the synchronism as a function of γ for two values of λ. The results 
obtained with the model presented here are indicated with dashed lines (thin line for λ=8 and 
thick line for λ=16) while those obtained with an infinite column model without radial 
current are indicated by full lines (thin for λ=8 and thick for λ=16). It can be seen that the 
behaviour of ζ is quite different when 3D effects and Jr are taken into account. Starting with 
low values of γ and low ζ the synchronism increases faster in the case with 3D effects but a 

larger value of γ is needed to access the region 
where ζ increases abruptly. On the other hand, 
beginning with large values of γ and ζ close to 1, 
where the results of both models coincide, it is 
possible to reduce γ further with the 3D model 
without entering the region where the synchronism 
decreases abruptly. The region with low γ and low 
ζ should correspond to most experimental 
conditions, where low penetration of the RMF is 
observed. The results obtained with the 3D model, 
which predicts higher currents in this parameter 
regime, show better agreement wih the 
experimental results than previous infinite column 
models. 

 
 
Fig. 1 also shows the existence of more than one synchronism value for a given λ and γ. This 
is a characteristic of all RMF current drive studies and is due to the nonlinear nature of the 
equations. We observe these features above λ=6 and a good example are the results obtained 
with λ=16 and no Jr (thick curve in Fig. 9), in this case there exists a small region, close to γ 
=21, where five different values of ζ  are possible once γ  is fixed. 
 
Figs. 10 and 11 present radial profiles of the normalized azimuthal and radial current 
densities for λ=8, γ=7.8 and λ=16, γ=16 respectively. In both figures the low synchronism 
solutions are presented and the thin dotted lines show the azimuthal current density profile 
obtained without including 3D effects. As it can be seen, the inclusion of 3D effects results 
in a strong increase in the driven azimuthal current density near the axis of the plasma 

Fig. 9. Synchronism as a function 

of RMF strength 
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column, in spite of a poor penetration of the RMF in both cases. This may be interpreted as a 
consequence of the existence of a region, close to the axis, where the torque arising from 
collisions is compensated by JrBz and the electrons rotate essentially synchronously with the 
RMF. At small radii no appreciable azimuthal current density exists for the infinite column 
model, while at large radii the profiles practically overlap. The same overlapping occurs also 
for the phasors of the RMF that show very little penetration in both cases. The characteristic 
peaked behavior of Jr is a consequence of the nonlinear effects and the requirement that it 
has to vanish at the separatrix. As the synchronism and RMF penetration increase the hollow 
Jθ and peaked Jr profiles become less pronounced. 
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Fig. 10 Profiles of the azimuthal and radial 

current densities for λ=8, γ=7.8 

Fig. 11 Profiles of the azimuthal and radial 

current densities for λ=16, γ=16 


