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Abstract 
Fishbone instability excited by the supra-thermal circulating electrons in tokamaks is 
investigated. It is found for first time that the procession of all the circulating 
electrons is in ion diamagnetic direction if magnetic share is neglected. The 
circulating electrons play bigger role on the modes than the barely trapped electrons. 
The analyses show that the mode frequency is close to the procession frequency of 
circulating electrons comparable with experiment observations. The correlation of the 
theory with experiments is discussed. 
 
Ⅰ. Introduction 

Internal kink modes driven by the supra-thermal electrons is reported on DⅢ-D 
tokamak [1]. This instability is most active when electron cyclotron current drive (ECCD) is 
applied on the high field side of the flux surface. It has a bursting behavior with poloidal/ 
toroidal mode number =m/n=1/1. In positive magnetic shear plasma this mode becomes 
fishbone instability. Strong m=1 MHD activities are also observed in HL-1M tokamak during 
off-axis electron cyclotron resonance heating (ECRH) when the cyclotron location is placed 
just outside the q=1 flux surface at high field side [2]. Addition of low-hybrid (LH) wave to 
ECRH significantly enhances the MHD activities. Lower-hybrid related fishbone is observed 
on FTU tokamak [3]. The fishbone-like structures are located at the q=1 flux surface only 
during high-power lower hybrid heating. Electron fishbone observed on FTU are strongly 
excited with LH+ECRH.  

Barely trapped electrons may be responsible for the events proposed by Wong et al [1]. 
The idea is proved in Ref.[4]. However, electrons are heated at high field site in common in 
all the experiments. This gives a hint that circulating electrons may play bigger role on the 
modes since a few trapped particles experience high field site.     

A set of canonical variables [5] is employed which gives a clear picture of the 
relativistic particle dynamics. It is found for first time that the procession of all the circulating 
electrons is in ion diamagnetic direction if magnetic share is neglected seen in Fig.1. Therefore, the 
supra-thermal circulating electrons have stronger effect than the barely trapped electrons on the modes. 

 A single dispersion relation is derived including the barely trapped electrons and the 
circulating electrons. The calculated frequency of the mode is near the supra-thermal electron 
procession frequency and consistent with experiments [1,2]. The internal kink modes for n=2 are 
included as well in our model. This may account for the observation on FTU tokamak. In the high 
power operation the presence of bursts of (1.1) is on the top of (2.1) modes in the device. 
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II. Exact guiding center variables 

  In tokamak configuration, the relativistic Hamiltonian of a charged particle can be 

expressed as 
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where AR, AZ, and Aφ are the vector potential components of the magnetic field, Φ the 

electrical potential,  is the rest mass, and e the charge. P0m R , Pφ,  PZ,   are the 

canonical momenta conjugate to R, φ, and Z respectively, 
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where γυ=u  and  is the relativistic factor. 2/122 )/1( cu+=γ

The magnetic field can be expressed as 

           φφ ∇+Ψ∇×∇= IB                           (5)  

where Ψ is related to the poloidal flux of the magnetic field, I is related to the 

poloidal current, R is the major radius. Then, in tokamaks we have 
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We introduce a generating function5, for changing to the guiding center variables, 
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and Ωc is the toroidal gyro-frequency taken absolute value for electron, ρ the Larmor 

radius, α the gyro-phase, subscripts o and c refer to the values at the magnetic axis 



and the guiding center respectively. X and α are the new coordinates conjugate to the 

momenta 
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where PX is actually the guiding center of Z coordinate, Zc. That the moment is turned 
to be coordinate often occurs during area-conserved canonical transformation [6]. The 

other two canonical variables  and φP φ  do not change in the new coordinates.  

The old coordinates are connected with new ones through four identical equations, 
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The Jacobian in the area-conserved transformation is unity [6], that is, 

                       φατ φα dXdddPdPJdPd x=                            （15）     
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The exact Hamiltonian for the relativistic particles is 
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It is suitable for particle simulation. The equations of motion and Vlasov’s equation could be 

derived from the Hamiltonian for the relativistic particles. 
                 

Ⅲ. Dispersion relation 
 

The plasma consists of two components. One is a relatively cold MHD part. The other is a 
hot particle component treated with gyro-kinetic description.  

For the gyro-kinetics the Hamiltonian in Eq.(17) could be averaged with the gyro-phase; 

Φ+++Ω= ecmcumPmH c
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We form a new invariant [6], 
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For the trapped particles in the large aspect ratio configuration, that is, 1<<ε , we get 
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which is the toroidal magnetic flux enclosed by drift surface. The bounce frequency and the 
procession frequency are obtained [4，7], 
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where is the poloidal gyro-frequency, pΩ 0/ Rr=ε , 
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For the circulating particles, 
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where G is the normalized procession of the circulating particle seen in Fig.1, σ  represents 

direction of the circulating particle and . It is found for first time that the procession of 

all the circulating electrons is in ion diamagnetic direction if magnetic share is neglected.  
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Figure 1 Normalized procession velocity of the circulating electrons versus k.  

s is the magnetic shear.  
 

   New momenta ζα PP ,,Π  are conjugate to ζαη ,,  in which bdt
d ωη

= , ζωζ
=

dt
d

, 

•Ψ=Ψ−= 0c
ePζ  which is actually the position variable [7].  

The bounce-averaged gyrokinetic equation for the non-relativistic scenario is easy to be derived, 
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where ξωδ ζ 01 RH pΩ−=  is the perturbed Hamiltonian by the radial MHD displacement, 
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indicating that the change of guiding center position induces change of particle kinetic energy and 

 is the electron diamagnetic drift frequency. The bounce-averaged equation Eq.(26) is derived 

in a complete set of canonical variables for both the trapped particles and circulating particles. The 
effects are canceled for the particles flying in different directions in Eq.(25). Only processions are 
left. . 
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Using the solution of Eq.(26) and Eq.(27) we can calculate the kinetic energy, 
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where 0λ  is the procession reversal point which varies with magnetic shear seen in Eq. (25) and 

mentioned in Ref. [8], 
E
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= , q is the safety factor,  is related to the particle bounce bk
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Since  is negative for electrons,  is positive only for the case of spatial density gradient 

reversal. E integration is straight. If we define poloidal beta of the hot electrons, 
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for the trapped particles, while for the circulating particle, 
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rf  roughly is proportional to the kinetic energy either from circulating particles or from barely 

trapped particles which destabilize the internal kink modes. We have calculated the ratios of the 
circulating particles to the barely trapped particles for different devices. For DⅢ-D  1136.0=ε  

17=
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. We have seen that the supra-thermal circulating 

electrons have stranger effect than the barely trapped electrons on the modes. 

We assume that ω̂  is insensitive to y and define 
ω

ω
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The dispersion relation is obtained, 
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where )ˆ3/( 0
2/1 sRVAA =ω  and  is the plasma dispersion function. The dispersion 

relation is slightly different from ones of the ion fishbone [10, 11]. 
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Ⅳ. Numerical solution 

Solution of the dispersion relation is obtained by using standard nonlinear complex solver. 

For the cases  and 0ˆ =fWδ
A

f
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ˆˆ =  we get iΩ  versus hβ  in Fig. 2 where  is iΩ



related to the growth rate by πωγ 2/ˆ icn Ω= . The critical hβ  for  is 0ˆ =fWδ
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which is comparable with precious works.[9,10]. For n=1, 36=eT  Kev ( ), 

=1.77 tesla, =0.2m, =0 and G=0.13 seen in Fig.1 we obtain procession frequency of the 

circulating electrons from Eq.(25)  which is consistent with experiment 

[1,2]. For MHD-stable case, 
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frequency is increased (seen Fig. 3). For the n=2 mode the threshold is increased according to 
Eq.(35). Only high power can drive the mode. This may account for the phenomena observed on 
FTU. During high power operation there is presence of burst of (1,1) on top of the (2,1) modes [3]. 
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Ⅴ. Summary 

 A set of canonical variables is employed which gives a clear picture of the relativistic particle 

dynamics. It is found for first time that the procession of all the circulating electrons is in ion 

diamagnetic direction if magnetic shear is neglected seen in Fig.1. The electron fishbone 

instability is investigated. Circulating electrons play bigger role on the modes than the barely 

trapped electrons. The analyses show that the mode frequency is close to the procession frequency 

of circulating electrons comparable with experiment observations [1,2]. Spatial gradient reversal 



is necessary for the instability. The high toroidal wave number is considered that has higher 

threshold. The theory may apply for FTU. During high power operation there is presence of burst 

of (1,1) on the top of (2.1) modes.  

 Negative magnetic shear increases  of the hot electrons andrf hβ , therefore, is 

destabilizing. This may account for the crucial feature, that is, the presence of a 
slightly inverted q profile in the center during fishbone period on FTU. Shear evolves 
with time [1] that may account for occurrences of the fishbones. 
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