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Three aspects of the physics of magnetic islands are investigated.  (a) The threshold for the onset of the is-
land in tokamak plasmas.  For a sufficiently high temperature plasma like that of ASDEX-Upgrade, the stabil-
ity of a small island is found to be mainly determined by the electron diamagnetic drift frequency ω*e and the 
heat diffusivity, and it can be driven unstable by the electron temperature gradient for a certain range of ω*e.  
In the nonlinear stage the saturated island width decreases for sufficiently large ω*e.  (b) The heat diffusion 
across stochastic magnetic field.  With the increase of the ratio between the parallel and the perpendicular 
heat diffusivity, the enhanced radial heat diffusivity due to the parallel transport along the field lines is found 
to be determined first by the additive effect of individual islands and then by the field ergodicity.  (c) The sta-
bilization of the island by rf current drive.  When the rf wave deposition width is larger than the island width, 
the modulated rf current drive has a stronger stabilizing effect than a non-modulated one.  A more effective 
way for stabilizing the large island is found by using both a rf current drive and a resonant helical field.

1. Introduction

The onset of magnetic islands in tokamak plasmas usually has a significant effect on the 
plasma performance, which could lead to the confinement degradation, a local  stochastic 
magnetic field region (the frequently interrupted regime), mode locking, or even disruptions 
[1-5].  It is important to  have a better understanding of the physics associated with mag-
netic islands.  Three aspects of the island physics are investigated here: the threshold for the 
onset of magnetic island, the heat diffusion across a local stochastic magnetic field and the 
stabilization of the island by localized rf current drive.

2. Threshold for the Onset of Magnetic Island

Most neoclassical tearing modes (NTMs) observed on ASDEX-Upgrade and DIII-D are 
triggered by additional perturbations like sawteeth [2-5].  This phenomenon agrees with 
previous theories.  Tearing modes are predicted to be stabilized by the electron diamagnetic 
drift in linear stage in a high β plasma even for ∆′>0 [6].  The experimental values of ∆′ are 
usually found to be negative for the tearing modes with poloidal mode number m≥3.  In the 
nonlinear stage the diamagnetic drift effect leads to the ion polarization current model of 
the threshold for the onset of NTMs [7,8].  In some discharges on ASDEX-Upgrade, how-
ever, NTMs grow spontaneously [5].  Moreover, most NTMs observed on TFTR do not 
have additional triggers for their onset [9], indicating that tearing modes can be linear un-
stable. It was recently found that, the tearing mode stability  depends on both the electron 
heat transport and  the electron diamagnetic drift frequency ω*e [10].

 Here the numerical modelling of the tearing mode stability is carried out basing on two 
fluid equations and using the experimental data as the input. The large aspect-ratio tokamak 
approximation is utilized, with the magnetic field B=B0t-(kr/m)B0teθ+∇ψ×et, where ψ is the 
helical flux function, m/r and k=n/R are the wave vectors in eθ (poloidal) and et (toroidal) 
direction, respectively, and the subscript 0 denotes an equilibrium quantity.  The ion veloc-
ity v=u e||+v � , where u and v � =∇φ×et are the parallel and the perpendicular component.  To 
obtain ψ, u, v � , the electron density ne and  temperature Te, the  following two fluid equa-
tions in normalized units are utilized [6,10],  
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= d1∇| |j -∇||(neu) + ∇⋅(D⊥∇⊥ne) + Sn, (1)
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⊥φ = S2∇||j+ µ⊥∇4φ, (4)
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ne

dTe

dt
= d1(1 + α)∇||j-Tene∇||u + ne∇⋅(χ||∇||Te) + ne∇⋅(χ⊥∇⊥Te) + Sp, (5)

where  d/dt=∂/∂t+v � ⋅∇, j, jb, and jd are the plasma,  the bootstrap and the rf current density 
along the et direction, respectively. µ⊥ is the viscosity, and χ and D are the heat and particle 
diffusivity.  The subscripts || and ⊥ stand for the parallel and the perpendicular components, 
and α=0.71 [6,10].  Sn, Sp and E0 are the particle and heat source and the equilibrium elec-
tric field. The parameters in Eqs. (1)-(5) are d1=ωce/νei, Ω=βed1, βe=4πneTe/B2, 
Cs=[(Te+Ti)/mi]1/2a/τR, S=τR/τA, where τA=a/vA is the Alfven time, and τR=a2µ0/η(r=0) is 
the resistive time. The length is normalized to the minor radius a, the time t  to τR, ψ to 
aB0t, v to a/τR, and Te and ne to their values at r=0. Eqs. (1)-(5) was utilized to study the 
tearing mode stability before by neglecting the perpendicular transport [6].

An example of the spontaneous growing m/n=3/2 tearing mode on ASDEX-Upgrade was 
shown in Ref. [5].  The corresponding deuterium plasma has Te=3.25keV, ne=1.15×1020m-3 
and B0t=2T, leading to S=4.27×108, d1=2.7×107, Ω=8.45×105, Cs=1.01×108a/τR, and 
χ||=1.11×1013a2/τR. The local equilibrium density gradient is nearly zero, and 
LTe=Te0/[a(dTe0/dr)]=0.41 at the q=3/2 rational surface. The profile of the safety factor q is 
monotonic with a negative value of ∆′ for the 3/2 mode.  Above parameters provide the in-
put data for our numerical calculations.

In Fig. 1a the normalized linear growth rate γ of the 3/2 mode is shown as a function of 
the parameter Ω by the solid curve for D⊥=χ⊥=0.3a2/τR and µ⊥=18.3a2/τR.  The classical 
perpendicular electron heat conductivity, χ⊥=4.7νe(vTe/ωce)2, leads to χ⊥=0.3a2/τR.  From 
Eq. (2) ω*e=Ω[ne0

´+1.17(1+α)Te0
´]m/rs is found, where the prime denotes d/dr, and rs is the 

minor radius at the rational surface.  A larger  Ω value corresponds to a larger ω*e or a 
higher β value.  For a sufficiently small Ω the diamagnetic drift effect is not important, and 
γ=-2.0×103/τR when Ω=0.  For a sufficiently large Ω, corresponding to a high mode fre-
quency, the mode is very stable with large negative values of γ, in agreement  with  previ-
ous theories that  the tearing mode is stable for sufficiently large ω*e [6]. For intermediate 
value of Ω around 105<Ω<106, however, the mode becomes unstable, which is different 
from previous results [6]. The experimental value of Ω=8.45×105 as mentioned above lies 
in the unstable region, in agreement with the experimental result that the 3/2 mode grows 
spontaneously.  The dotted curve in Fig. 1a is obtained by taking  D⊥=χ⊥=0.1a2/τR.  The un-
stable region is narrower as χ⊥  decreases.  The dashed curve in Fig. 1a shows the growth 
rate of the 6/4 mode.  The 6/4 mode has nearly the same unstable region as the 3/2 mode.  
Only in the small or large Ω  region the 6/4 mode is more stable than the 3/2 mode.
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Fig. 1 (a) The normalized linear growth rate versus Ω for classical perpendicular transport coef-
ficients.  (b) Same as (a) but for  anomalous perpendicular transport coefficients.   (c) Nonlinear 
time evolution of the island width with fb=0.1 (solid) and 0 (dotted) for Ω=2, 4 and 6×103.

Since the perpendicular transport is usually anomalous for tokamak plasmas, we have 
also studied the mode stability by taking the perpendicular transport coefficients to be at the 
level of the anomalous transport coefficients.  In Fig. 1b the growth rate of the 3/2 mode is 
shown as a function of Ω by the solid curve for χ⊥=µ⊥=150a2/τR and D⊥=χ⊥/6, correspond-
ing to χ⊥=µ⊥=0.5m2/s.  It is seen that, the mode remains stable in the small or large Ω re-
gion.  The dotted curve in Fig. 1b is obtained with D⊥=χ⊥/5, and dashed one with 
µ⊥=300a2/τR.   A larger D⊥ or µ⊥ leads to a narrower unstable region. When the equilibrium 
electron temperature gradient is taken to be zero, no unstable mode is found independent of 
the values for Ω and the plasma density gradient, indicating that the electron temperature 
gradient is the only driving mechanism for the unstable mode.  Extensive calculations have 
also been done to study the effect of other parameters.  The mode is found to be more un-
stable for a smaller value of Cs or larger values of d1, χ|| and S.  

The nonlinear time evolution of the normalized island width, W/a, is shown in Fig. 1c 
with a reduced set of parameters, S=5×106, d1=1.0×105, Cs=1.0×106a/τR, χ||=5.0×108a2/τR, 
χ⊥=µ⊥=10a2/τR, and D⊥=χ⊥/5, for saving the computation time. The other parameters are 
kept unchanged.  It is seen that, when the fraction of  the bootstrap current density at the ra-
tional surface, fb=[jb/j]r=rs, is 0 (dotted curves), the island decays for Ω≤2×103 but grows 
and saturates for Ω=4×103 and 6×103. The local electron temperature gradient is decreased 
by the island, which in turn leads to the mode saturation. For fb=0.1 (solid curves), the 
mode further develops into the standard NTMs and saturates at a larger amplitude for 
Ω=2×103 and 4×103.  For a sufficiently large Ω (≥6×103), the island width becomes compa-
rable to that obtained with fb=0. When Ω is high enough (Ω>2×104), the island is found to 
decay even for fb=0.1, indicating that the ion polarization current could be important in de-
termining the saturation amplitude of NTMs. The mode frequency is found to be propor-
tional to Ω for a small island and decreases as the island width increases due to the partial 
flattening of the temperature profile across the island.  

3. Heat Diffusion across a Local Stochastic Magnetic Field

The heat diffusion across the stochastic field is of general interest in plasma physics [e.g., 
3]. It was shown in Ref. [11] that, in the collisional regime Lλ<Lκ, the enhanced radial heat 
conductivity due to the magnetic field ergodicity, χr, is 
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χr = DMχ|| /Lcδ,  (6)
where DM=L0∑(br,k/B0t)2δ(mk/q-nk), br,k, mk and nk are the radial field perturbation, the po-
loidal and toroidal mode numbers of the kth Fourier component, respectively, L0≈πR, 
Lcδ=Lcln[(r/mLc)(χ||/χ⊥)1/2], Lc=πR/ln(π∆/2), ∆=(w1+w2)/(2|r1-r2|), w1 and w2 are the widths 
of two neighboring islands, and r1 and r2 are the minor radius of the corresponding rational 
surfaces.  Lλ is the electron mean free path, Lk≈[Ls

2/(k⊥
2DM)]1/3 [11,12], k⊥ is the perpen-

dicular wave vector of the perturbations, Ls=Rq2/rq′, and the summation is over k to include 
all resonant components. Krommes et al later showed that the collisional regime consists of 
three sub-regimes [12]. With the decrease of Lλ they are  (a) Rechester-Rosenbluth regime, 
χr=DMχ||/Lk, (b) Kadomsev-Pogutse regime, χr=DMk⊥(χ||χ⊥)1/2, and (c) Fluid regime, 
χr=DMχ||/L0. It was found recently that [13], in the limit χ||/χ⊥>>1 but Wk/Wc,k<<1,   

χr(r) = ∑χ⊥

W4
k

8W4
c,k

gk(zk)
k

= ∑χ||

k

b2
r,k

2B2
0t

gk(zk),  (7)

where Wk is the island width of the kth component, Wc,k=a(χ⊥/χ||)1/4[8Lq/(εank)]1/2, ε=a/R, 
Lq=q/q′, zk=23/2(r-rs,k)/Wc,k, rs,k is the minor radius of the rational surface, g(z)=[1+zf(z)], 
and f(z)=-0.5z∫dy(1-y2)-1/4exp(-zy2/2) with integration from 0 to 1. Eq. (7) reduces to the 
Fluid regime result in the limit zk=0 except for a factor 2δ(mk/q-nk).  The function gk(zk) in 
Eq. (7), however,  indicates the role of Wc,k.  Since gk(zk) approaches zero as zk>2 [13], χr 
is dominated by the additive effects of these individual islands satisfying zk<2.  This is dif-
ferent from previous theories that DM includes all resonant perturbations. Eq. (7) has an im-
portant implication on the heat diffusion across a stochastic field where χ||/χ⊥ is not high 
enough. For typical tokamak edge parameters Te=40ev, ne=1019m-3, Lq=a, R/a=3, n=2 and 
χ⊥=1m2/s, one finds Wc,k=0.060a.  This means that for small islands with Wk<0.060a, the 
heat diffusion is determined by the additive effect of individual islands rather than the field 
ergodicity.

Numerical simulations can check the analytical result for Wk/Wc,k<1 and provide further 
insight into the χr for Wk>Wc,k.  Recently a new numerical method was developed for such 
a purpose, showing the required numerical accuracy at high χ||/χ⊥ [14].  Eq. (5) is solved 
with u=d1=0, q(r)=q0exp(r/Lq), ψk(r)=ψ0(r/a)2(1-r/a)2aB0tcos(mkθ+nkφ), and the perturbed 
field B1=∑∇ψk×et, assuming ne, χ|| and χ⊥ to be constant. Sp(r)=P0[1-(r/a)2]16 peaks at r=0.  

The local magnetic field becomes stochastic when islands of different helicity overlap. In 
Fig. 2a log(χr/χ⊥) versus log(χ||/χ⊥) is shown for Lq=0.3a and ψ0=9×10-4 by the solid curve 
for a two island case, m/n=3/2 and 4/3, leading to the island width W3/2=W4/3=0.045a.  The 
rational surfaces are at r3/2=0.604a and r4/3=0.569a, with ∆=1.3.  The value of χr is taken at 
r=0.587a where the field is stochastic. χ⊥ is kept constant for these calculations.   It is seen 
that χr∝χ|| for χ||/χ⊥<106 in agreement with Eq. (7).  For χ||/χ⊥>3×108 (W3/2>3.2Wc,3/2), χr 
also approximately scales as χ||.  Between these two limits there is a transition region 
around χ||/χ⊥=3×107 (W3/2=1.7Wc,3/2) where χr slowly increases with χ||.  The dotted curve 
shows log(χ3/2+χ4/3), where χ3/2 (χ4/3) is the (χr/χ⊥)|r=0.587a obtained for a single 3/2 (4/3) is-
land alone, with other parameters unchanged.  The dotted curve is the same as the solid one 
for χ||/χ⊥<3×107, as predicted by Eq. (7) that χr is determined by the additive effects of the 
individual islands for Wk<Wc,k.  Only for Wk>>Wc,k, the solid curve is larger than the 
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Fig. 2 (a) log(χr/χ⊥) versus log(χ||/χ⊥) for two island case, m/n=3/2 and 4/3 (solid).  The dotted 
curve shows log(χ3/2+χ4/3), and the dashed curve is the log(χr/χ⊥) for  m/n=3/2, 4/3, 7/5, 10/7, and 
11/8.  (b) κ versus log(χ||/χ⊥) with ψ0=0.9, 1.2 and 1.5×10-3 for the 5 islands case (solid).  The dot-
ted curve shows the result from Eq. (6) with ψ0=1.5×10-3, and the dashed curve is the κ for m/n=3/2 
and 4/3 with ψ0=9.0×10-4. (c) κ versus log(χ||/χ⊥) with Lq=0.1a and ψ0=4.5 and 7.5×10-3 for the 5 
islands case (solid).  The dotted curve shows the result from Eq. (6) with ψ0=7.5×10-3, and the 
dashed curve is the κ for Lq=0.3a and ψ0=1.5×10-3.

dotted one, showing the role of the field ergodicity.  The dashed curve in Fig. 2a is the 
log(χr/χ⊥) at r=0.579a for the same ψ0 but five components magnetic perturbations, 
m/n=3/2, 4/3, 7/5, 10/7, and 11/8, with ∆ ranging from 1.6 to 3.8 and r7/4=0.584a, 
r10/7=0.590a and r11/8=0.578a.  It shows a similar behavior as the two islands cases.
 
 Since χr is not constant across the stochastic field region, in the following the radial aver-
aged χr, <χr>=∫χrdr/(rb-ra), is used for a further comparison with analytical results.  The in-
tegration is taken from ra=0.575a to rb=0.600a where the magnetic field is stochastic.  In 
Fig. 2b κ≡a<χr>/[χ||L0∑(bk,r/B0t)2] versus log(χ||/χ⊥) is shown by the solid curves with 
ψ0=9×10-4, 1.2×10-3, and 1.5×10-3 for the 5 islands case.  For χ||/χ⊥~102-103, κ is the same 
for different ψ0, as predicted by Eq. (7) in the limit zk=0.  In this limit Eq. (7) leads to 
κ=0.048 in agreement with the numerical results.  With the increase of χ||/χ⊥, κ decreases 
and approaches a steady value again at high χ||/χ⊥ for sufficiently large ψ0 (κ oscillates for 
small ψ0).  This differs from the prediction of the Rechester-Rosenbluth regime that 
κ~1/Lk~DM

1/3~ψ0
2/3.  The faster decay of κ with increasing χ||/χ⊥ for a larger ψ0 is due to 

the corresponding larger  Wk/Wc,k so that the transition region as shown in Fig. 2a is 
reached at a lower χ||/χ⊥.  The dotted curve on Fig. 2b shows the result from Eq. (6) with 
ψ0=1.5×10-3, being different from the numerical results. The dashed curve is the κ for the 
two island case, m/n=3/2 and 4/3, with ψ0=9.0×10-4 and the radial average from r=0.58a to 
0.59a, which shows a similar behavior as the five islands case: κ decreases by about one or-
der of magnitude from small to large Wk/Wc,k.  

Increasing the magnetic shear by 3 times to Lq=0.1a, κ versus log(χ||/χ⊥) is shown in Fig. 
2c by the solid curves for the 5 islands case with ψ0=4.5×10-3 and 7.5×10-3.  In this case the 
rational surfaces are closer, with r3/2=0.595a, r4/3=0.583a, r7/4=0.588a, r10/7=0.590a and 
r11/8=0.587a, and the radial average is from 0.584a to 0.594a.  It is seen that κ approaches a 
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steady value for χ||/χ⊥~102 and a nearly steady value at large χ||/χ⊥ for sufficiently large ψ0, 
similar to Fig. 2b.  The dotted curve is the result from Eq. (6) for ψ0=7.5×10-3, being more 
different from the numerical results for the large magnetic shear case.  The dashed curve is 
the result with a smaller magnetic shear, Lq=0.3a, and ψ0=1.5×10-3.  It is seen that, with a 
larger magnetic shear κ converges to a smaller value at large χ||/χ⊥ for sufficiently large ψ0, 
differing to the prediction of the Rechester-Rosenbluth regime that κ~1/Lk~Lq

-2/3.  The 
Kadomsev-Pogutse regime is not found from  numerical results.  

4. Stabilization of Magnetic Islands by RF Current Drive

To study the stabilization of NTMs by localized rf current drive, the  basic  equations  uti-
lized here are Eqs. (2), (4) and (5), and the two fluids effects are neglected by taking 
Ω=d1=Cs=0. The fast electron density is described by [15] 

∂nf

∂t
= ∇⋅(χ||f∇||nf) + ∇⋅(χ⊥f∇⊥nf) + ν(nfs − nf), (8)

where nf, χ||f, χ⊥f, and ν-1 are the density, the parallel and perpendicular transport coef-
ficients, and the slowing down time of the fast electrons, respectively. nfs is the fast electron 
source due to the rf waves given by [15]   

nfs = nfs0exp[-(
(r-rds)

wds
)2]Π(h0,∆h), (9)

where nfs0, wds and rds specify the magnitude, the radial half-width and the deposition radius 
of the source, respectively. Π(h0,∆h)=1 for |h-h0|<∆h and hon<ho<hoff, and Π(h0,∆h)=0 else-
where, where h0=ωt, ω is the rf wave modulation frequency, ∆h is the instantaneous wave 
deposition width along the helical angle h=mθ+nφ, and hon (hoff) is the helical angle at 
which the rf wave is turned on (off).  The frame studied is the one in which the island does 
not rotate, and its o-point and x-point are at h=0° and ±180° respectively,  while the instan-
taneous wave deposition rotates with respect to the island at a angular frequency ω.  When 
hon=-90° and hoff=90°, the wave deposition is only around the island’s o-point, and we will 
call this case as the modulated current drive (MCD).  When  hon=-180° and hoff=180°, the 
fast electron source rotates all along the helical angle, corresponding to a continuous rf cur-
rent drive in time. Assuming that the driven current density is proportional to the fast elec-
tron density, jd~nf, the total driven current Id is obtained by integrating jd over the plasma 
cross section.  The rf source current Ids is obtained similarly. 

In Fig. 3a the saturated island width of a m/n=3/2 NTM driven by the bootstrap current is 
shown by the dotted line, with rs=0.58a, fb=6.4%, S=108, τµ=a2/µ⊥=τR/10, and χ||/χ⊥=1010. 
When the rf current is switched on, the saturated island width is shown  as a function of 
α=|hon+hoff|/2 for ν=3×103/τR, 104/τR, 3×104/τR, and 5×104/τR, respectively, with αw=|hon-
hoff|/2=90° (MCD), Ids/Ip=0.03, wds/a=0.1, χ⊥f =1.0a2/τR, χ||f/χ⊥f =1010, ∆h=27.6°, and 
ω=3×104/τR. It is seen that a rf current drive around the island’s o-point at α=0° (x-point at 
α=180°) has a stabilizing (destabilizing) effect.  The transition from the stabilization to de-
stabilization occurs around α=90-100°.  For a larger ν, the stabilizing effect is larger be-
cause (a) a larger ν/ω leads to a higher Id/Ids, and (b) A larger ν (smaller χ⊥f/ν) leads to a 
weaker broadening of the rf current density profile.
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Fig. 3 (a) The saturated island width versus α=|hon+hoff|/2 without (dotted) and with rf current  for 
ν=0.3, 1, 3 and 5×104/τR (solid). (b) The saturated island width versus αw=|hon-hoff|/2 without (dot-
ted) and with rf current for α=0° (o-point) and 180° (x-point). (c) The saturated island width versus 
bra (solid) and the saturated island width obtained for MCD and bra=0 (dotted).  

In Fig. 3b the saturated island width of a m/n=3/2 NTM driven by the bootstrap current is 
shown by the dotted line.  When the rf current is switched on, the saturated island width is 
shown  as a function of αw=|hon-hoff|/2 for α=0° (o-point) and 180° (x-point), with other pa-
rameters unchanged. It is seen that for α=0°, the largest stabilizing effect is around αw=90° 
(MCD).  For αw=180° ( continuous current drive), the stabilizing effect is weaker than the 
MCD to deposit the rf current around the island’s o-point, since the rf deposition width is 
larger than the island width [15].  

It is well known that it is more favorable for a fusion reactor to operate at a higher β 
value. In the high β regime the m/n=2/1 NTM is expected to develop into a larger ampli-
tude [2].  Comparing with the 3/2 mode, the 2/1 mode is closer to the plasma edge and can 
be easily locked to the wall or the error field when the island is large enough.  Once mode 
locking occurs, its stabilization by rf current is usually not possible, since the  o-point of a 
locked island is not necessarily in the deposition region of the rf wave. To use the rf current 
to stabilize a locked mode, an externally applied resonant helical field (RHF) is needed to 
adjust the island to be in the right phase.  There are extensive studies on the mode locking 
of tearing modes. The experimental results show that the penetration threshold of an error 
field is very small, typically bra=br(r=a)/B0t<10-4 [16,17].  For the mode locking of a large 
island to a RHF, the required amplitude of RHF is much smaller, since the electromagnetic 
torque to stop the island rotation increases with the square of the island width.  Here the 
mode locking will not be studied, and we only focus on the effect of the  RHF on the stabi-
lization of the locked NTMs by the rf current.  

  In Fig. 3c the saturated island width of the 3/2 mode is shown as a function of bra for 
fb=0.19 Ids=0.06, and wds=0.05a (solid curve). In this case mode locking is assumed for all 
values of bra by taking ω=0, so that the island’s o-point is always in the center of the rf 
wave deposition region. The island width increases with bra, since the RHF has a destabiliz-
ing effect on NTMs after mode locking. The dotted line shows saturated island width ob-
tained for MCD with bra=0, ω=3×104/τR and other parameters unchanged.  In the MCD 
case, the rf power is turned on for only half the time (see Fig. 3b), and the resulting rf cur-
rent is only half of that of a continuous current drive.  With a RHF the island width is re-
duced to a smaller value by the rf current than that of MCD for bra<1.8×10-3, because affter 
mode locking the rf power is turned on for the full time, and the rf current is two times 
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larger than that of MCD, leading to a larger  stabilizing effect comparing with MCD if the 
required bra to lock island is not too large.  

In fact, when the amplitude of the RHF is large enough to decreases the island rotation 
frequency, leading to a longer island rotation period comparing with the slowing down time 
of the fast electrons, a larger stabilizing effect by the rf current is expected as seen from 
Fig. 3a. Above results indicate that, the RHF can not only be used to adjust the island phase 
to let its o-point in the rf wave deposition region after usual mode locking, it can also be ac-
tively used to increase the stabilizing efficiency of the rf current, once the island is large 
enough so that a small amplitude RHF can decreases the island rotation frequency or lock 
the island in the desired phase. Such a method is expected to be helpful for the stabilization 
of NTMs, especially the 2/1 NTM, in the plasma with a higher bootstrap current fraction. 

5. Summary

(a) Using the experimental values as the input data, the electron temperature gradient is 
shown to drive a new type of tearing mode instability even for a negative ∆′, in agreement 
with the experimental observations.  In the nonlinear phase the saturated island width de-
creases for sufficiently large electron diamagnetic drift frequency. 
 
(b) The heat diffusion across a local stochastic magnetic field is characterized by Wk/Wc,k.  
For the quasi-linear regime Wk<<Wc,k, the heat transport is determined by the additive ef-
fects of the individual islands.  Around Wk∼Wc,k, χr slowly increases with χ||/χ⊥.  For 
Wk/Wc,k>>1, χr approximately scales with χ||.

(c) When the rf wave deposition width is larger than the island width, the modulated rf cur-
rent drive has a stronger stabilizing effect than a non-modulated one. The stabilization of a 
large island by the rf current becomes more effective when using a small amplitude reso-
nant helical field to decreases the island rotation frequency or to lock the island in the rf 
wave deposition region.  
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